Hyperspectral Image Compression Using an Online Learning Method

被引:1
|
作者
Ulku, Irem [1 ]
Toreyin, B. Ugur [1 ,2 ]
机构
[1] Cankaya Univ, Dept Elect & Elect Engn, TR-06790 Ankara, Turkey
[2] ODTU Yerleskesi, TUBITAK UZAY Sci & Tech Res Council Turkey, Space Technol Inst, TR-06800 Ankara, Turkey
关键词
Hyperspectral Compression; Sparse Coding; Hyperspectral Imagery; Basis Pursuit; Online Learning; CLASSIFICATION;
D O I
10.1117/12.2178133
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A hyperspectral image compression method is proposed using an online dictionary learning approach. The online learning mechanism is aimed at utilizing least number of dictionary elements for each hyperspectral image under consideration. In order to meet this "sparsity constraint", basis pursuit algorithm is used. Hyperspectral imagery from AVIRIS datasets are used for testing purposes. Effects of non-zero dictionary elements on the compression performance are analyzed. Results indicate that, the proposed online dictionary learning algorithm may be utilized for higher data rates, as it performs better in terms of PSNR values, as compared with the state-of-the-art predictive lossy compression schemes.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] GOLOMB-RICE CODING PARAMETER LEARNING USING DEEP BELIEF NETWORK FOR HYPERSPECTRAL IMAGE COMPRESSION
    Shen, Hongda
    Pan, W. David
    Dong, Yuhang
    Jiang, Zhuocheng
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 2239 - 2242
  • [32] SPECTRAL-SPATIAL ONLINE DICTIONARY LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Fu, Wei
    Li, Shutao
    Fang, Leyuan
    Benediktsson, Jon Atli
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 3724 - 3727
  • [33] Online Dictionary Self-taught Learning for Hyperspectral Image Classification
    Liu, Fengshuang
    Ma, Jiachen
    Zhao, Rongqiang
    Wang, Qiang
    2018 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC): DISCOVERING NEW HORIZONS IN INSTRUMENTATION AND MEASUREMENT, 2018, : 1933 - 1937
  • [34] IMPROVED PRINCIPAL COMPONENT ANALYSIS BASED HYPERSPECTRAL IMAGE COMPRESSION METHOD
    Liu, Baisen
    Zhang, Ye
    Zhang, Wulin
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 1478 - 1480
  • [35] Efficient image compression method using image super-resolution residual learning network
    Hu, Jianhua
    Wang, Bo
    Liu, Xiaolin
    Zheng, Shuzhao
    Chen, Zongren
    Wu, Weimei
    Guo, Jianding
    Huang, Woqing
    JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2023, 23 (03) : 1561 - 1571
  • [36] Image Compression Using Improved Method
    Ibrahim, Atya Baidaa A.
    Sami, Abdul-Wahab
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (06) : 1007 - 1015
  • [37] Transform coding compression of hyperspectral image
    Wang, CS
    Jiao, AL
    Li, J
    IMAGING SYSTEMS TECHNOLOGY FOR REMOTE SENSING, 1998, 3505 : 69 - 78
  • [38] EigenWavelet:: Hyperspectral image compression algorithm
    Srinivasan, S
    Kanal, LN
    DCC '99 - DATA COMPRESSION CONFERENCE, PROCEEDINGS, 1999, : 550 - 550
  • [39] Hyperspectral image compression on reconfigurable platforms
    Fry, TW
    Hauck, S
    10TH ANNUAL IEEE SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES, PROCEEDINGS, 2002, : 251 - 260
  • [40] Data characterization for hyperspectral image compression
    Simmons, RE
    Brower, BV
    Schott, JR
    MULTISPECTRAL IMAGING FOR TERRESTRIAL APPLICATIONS II, 1997, 3119 : 172 - 183