Integration of Diffusion-Weighted MRI Data and a Simple Mathematical Model to Predict Breast Tumor Cellularity During Neoadjuvant Chemotherapy

被引:37
|
作者
Atuegwu, Nkiruka C. [2 ]
Arlinghaus, Lori R. [2 ]
Li, Xia [2 ]
BrianWelch, E. [2 ]
Chakravarthy, Bapsi A. [3 ,4 ]
Gore, John C. [2 ,3 ,5 ,6 ,7 ]
Yankeelov, Thomas E. [1 ,2 ,3 ,5 ,6 ,8 ]
机构
[1] Vanderbilt Univ, Med Ctr, Inst Imaging Sci, Nashville, TN 37232 USA
[2] Vanderbilt Univ, Dept Radiol & Radiol Sci, Nashville, TN 37232 USA
[3] Vanderbilt Univ, Vanderbilt Ingram Canc Ctr, Nashville, TN 37232 USA
[4] Vanderbilt Univ, Dept Radiat Oncol, Nashville, TN 37232 USA
[5] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37232 USA
[6] Vanderbilt Univ, Dept Biomed Engn, Nashville, TN 37232 USA
[7] Vanderbilt Univ, Dept Mol Physiol & Biophys, Nashville, TN 37232 USA
[8] Vanderbilt Univ, Dept Canc Biol, Nashville, TN 37232 USA
基金
美国国家卫生研究院;
关键词
diffusion MRI; cellularity; tumor growth; mathematical model; breast cancer; GLIOMA GROWTH; FRACTION; CANCER; IMAGES;
D O I
10.1002/mrm.23203
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Diffusion-weighted magnetic resonance imaging data obtained early in the course of therapy can be used to estimate tumor proliferation rates, and the estimated rates can be used to predict tumor cellularity at the conclusion of therapy. Six patients underwent diffusion-weighted magnetic resonance imaging immediately before, after one cycle, and after all cycles of neoadjuvant chemotherapy. Apparent diffusion coefficient values were calculated for each voxel and for a whole tumor region of interest. Proliferation rates were estimated using the apparent diffusion coefficient data from the first two time points and then used with the logistic model of tumor growth to predict cellularity after therapy. The predicted number of tumor cells was then correlated to the corresponding experimental data. Pearson's correlation coefficient for the region of interest analysis yielded 0.95 (P = 0.004), and, after applying a 3 3 3 mean filter to the apparent diffusion coefficient data, the voxel-by-voxel analysis yielded a Pearson correlation coefficient of 0.70 +/- 0.10 (P < 0.05). Magn Reson Med 66:1689-1696, 2011. (C) 2011 Wiley Periodicals, Inc.
引用
收藏
页码:1689 / 1696
页数:8
相关论文
共 50 条
  • [31] Diffusion-Weighted Magnetic Resonance Imaging of the Breast: an Accurate Method for Measuring Early Response to Neoadjuvant Chemotherapy?
    Amar N. Kanani
    Nisha Sharma
    David L. Buckley
    Current Breast Cancer Reports, 2019, 11 : 74 - 82
  • [32] Diffusion-Weighted Magnetic Resonance Imaging of the Breast: an Accurate Method for Measuring Early Response to Neoadjuvant Chemotherapy?
    Kanani, Amar N.
    Sharma, Nisha
    Buckley, David L.
    CURRENT BREAST CANCER REPORTS, 2019, 11 (02) : 74 - 82
  • [33] Prediction of pathologic response to neoadjuvant chemotherapy in patients with breast cancer using diffusion-weighted imaging and MRS
    Shin, Hee Jung
    Baek, Hyeon-Man
    Ahn, Jin-Hee
    Baek, Seunghee
    Kim, Hyunji
    Cha, Joo Hee
    Kim, Hak Hee
    NMR IN BIOMEDICINE, 2012, 25 (12) : 1349 - 1359
  • [34] Can early response after the first cycle of neoadjuvant chemotherapy for breast carcinoma on diffusion-weighted magnetic resonance imaging predict the pathological outcome?
    Keupers, M.
    Clinckemaillie, G.
    Cardoen, L.
    Poppe, A.
    Neven, P.
    Wildiers, H.
    Smeets, A.
    Laenen, A.
    De Keyzer, F.
    Van Ongeval, C.
    EUROPEAN JOURNAL OF CANCER, 2016, 57 : S96 - S96
  • [35] Combined dynamic DCE-MRI and diffusion-weighted imaging to evaluate the effect of neoadjuvant chemotherapy in cervical cancer
    Feng, Yusen
    Liu, Hui
    Ding, Yingying
    Zhang, Ya
    Liao, Chengde
    Jin, Yan
    Ai, Conghui
    TUMORI JOURNAL, 2020, 106 (02): : 155 - 164
  • [36] The effect of tumor volume and pathology on diffusion-weighted MRI during radiotherapy of lung cancer
    Weiss, E.
    Ford, J. C.
    Olsen, K.
    Karki, K.
    Hugo, G. D.
    RADIOTHERAPY AND ONCOLOGY, 2014, 111 : S128 - S128
  • [37] Nomogram for Early Prediction of Pathological Complete Response to Neoadjuvant Chemotherapy in Breast Cancer Using Dynamic Contrast-enhanced and Diffusion-weighted MRI
    Zhao, Rui
    Lu, Hong
    Li, Yan-Bo
    Shao, Zhen-Zhen
    Ma, Wen-Juan
    Liu, Pei-Fang
    ACADEMIC RADIOLOGY, 2022, 29 : S155 - S163
  • [38] Use of Pretreatment Multiparametric MRI to Predict Tumor Regression Pattern to Neoadjuvant Chemotherapy in Breast Cancer
    Liu, Chen
    Huang, Xiaomei
    Chen, Xiaobo
    Shi, Zhenwei
    Liu, Chunling
    Liang, Yanting
    Huang, Xin
    Chen, Minglei
    Chen, Xin
    Liang, Changhong
    Liu, Zaiyi
    ACADEMIC RADIOLOGY, 2023, 30 : S62 - S70
  • [39] Diffusion-weighted MRI: influence of intravoxel fat signal and breast density on breast tumor conspicuity and apparent diffusion coefficient measurements
    Partridge, Savannah C.
    Singer, Lisa
    Sun, Ryan
    Wilmes, Lisa J.
    Klifa, Catherine S.
    Lehman, Constance D.
    Hylton, Nola M.
    MAGNETIC RESONANCE IMAGING, 2011, 29 (09) : 1215 - 1221
  • [40] Diffusion-weighted magnetic resonance imaging for assessment after neoadjuvant chemotherapy in breast cancer, based on morphological concepts
    Murata, Yoriko
    Kubota, Kei
    Hamada, Norihiko
    Miyatake, Kana
    Tadokoro, Michiko
    Nakatani, Kimiko
    Ue, Hironobu
    Tsuzuki, Kazuhiro
    Nishioka, Akihito
    Iguchi, Mitsuko
    Maeda, Hironobu
    Ogawa, Yasuhiro
    ONCOLOGY LETTERS, 2010, 1 (02) : 293 - 298