Integration of Diffusion-Weighted MRI Data and a Simple Mathematical Model to Predict Breast Tumor Cellularity During Neoadjuvant Chemotherapy

被引:37
|
作者
Atuegwu, Nkiruka C. [2 ]
Arlinghaus, Lori R. [2 ]
Li, Xia [2 ]
BrianWelch, E. [2 ]
Chakravarthy, Bapsi A. [3 ,4 ]
Gore, John C. [2 ,3 ,5 ,6 ,7 ]
Yankeelov, Thomas E. [1 ,2 ,3 ,5 ,6 ,8 ]
机构
[1] Vanderbilt Univ, Med Ctr, Inst Imaging Sci, Nashville, TN 37232 USA
[2] Vanderbilt Univ, Dept Radiol & Radiol Sci, Nashville, TN 37232 USA
[3] Vanderbilt Univ, Vanderbilt Ingram Canc Ctr, Nashville, TN 37232 USA
[4] Vanderbilt Univ, Dept Radiat Oncol, Nashville, TN 37232 USA
[5] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37232 USA
[6] Vanderbilt Univ, Dept Biomed Engn, Nashville, TN 37232 USA
[7] Vanderbilt Univ, Dept Mol Physiol & Biophys, Nashville, TN 37232 USA
[8] Vanderbilt Univ, Dept Canc Biol, Nashville, TN 37232 USA
基金
美国国家卫生研究院;
关键词
diffusion MRI; cellularity; tumor growth; mathematical model; breast cancer; GLIOMA GROWTH; FRACTION; CANCER; IMAGES;
D O I
10.1002/mrm.23203
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Diffusion-weighted magnetic resonance imaging data obtained early in the course of therapy can be used to estimate tumor proliferation rates, and the estimated rates can be used to predict tumor cellularity at the conclusion of therapy. Six patients underwent diffusion-weighted magnetic resonance imaging immediately before, after one cycle, and after all cycles of neoadjuvant chemotherapy. Apparent diffusion coefficient values were calculated for each voxel and for a whole tumor region of interest. Proliferation rates were estimated using the apparent diffusion coefficient data from the first two time points and then used with the logistic model of tumor growth to predict cellularity after therapy. The predicted number of tumor cells was then correlated to the corresponding experimental data. Pearson's correlation coefficient for the region of interest analysis yielded 0.95 (P = 0.004), and, after applying a 3 3 3 mean filter to the apparent diffusion coefficient data, the voxel-by-voxel analysis yielded a Pearson correlation coefficient of 0.70 +/- 0.10 (P < 0.05). Magn Reson Med 66:1689-1696, 2011. (C) 2011 Wiley Periodicals, Inc.
引用
收藏
页码:1689 / 1696
页数:8
相关论文
共 50 条
  • [11] Diffusion-weighted imaging in assessing pathological response of tumor in breast cancer subtype to neoadjuvant chemotherapy
    Liu, Shangang
    Ren, Ruimei
    Chen, Zhaoqiu
    Wang, Yongsheng
    Fan, Tingyong
    Li, Chengli
    Zhang, Pinliang
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2015, 42 (03) : 779 - 787
  • [12] Diffusion-weighted MRI and PET/CT reproducibility in epithelial ovarian cancers during neoadjuvant chemotherapy
    Crombe, Amandine
    Gauquelin, Lisa
    Nougaret, Stephanie
    Chicart, Marine
    Pulido, Marina
    Floquet, Anne
    Guyon, Frederic
    Croce, Sabrina
    Kind, Michele
    Cazeau, Anne-Laure
    DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2021, 102 (10) : 629 - 639
  • [13] Diffusion-weighted MRI and histogram analysis: assessment of response to neoadjuvant chemotherapy in nephroblastoma
    Andreas M. Hötker
    Yousef Mazaheri
    André Lollert
    Jens-Peter Schenk
    Junting Zheng
    Marinela Capanu
    Oguz Akin
    Norbert Graf
    Gundula Staatz
    Abdominal Radiology, 2021, 46 : 3317 - 3325
  • [14] Diffusion-weighted MRI and histogram analysis: assessment of response to neoadjuvant chemotherapy in nephroblastoma
    Hotker, Andreas M.
    Mazaheri, Yousef
    Lollert, Andre
    Schenk, Jens-Peter
    Zheng, Junting
    Capanu, Marinela
    Akin, Oguz
    Graf, Norbert
    Staatz, Gundula
    ABDOMINAL RADIOLOGY, 2021, 46 (07) : 3317 - 3325
  • [15] Longitudinal study of the assessment by MRI and diffusion-weighted imaging of tumor response in patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy
    Sharma, Uma
    Danishad, Karikanni Kalathil A.
    Seenu, Vurthaluru
    Jagannathan, Naranamangalam R.
    NMR IN BIOMEDICINE, 2009, 22 (01) : 104 - 113
  • [16] Diffusion-Weighted and Dynamic Contrast-Enhanced MRI in Evaluation of Early Treatment Effects During Neoadjuvant Chemotherapy in Breast Cancer Patients
    Jensen, Line R.
    Garzon, Benjamin
    Heldahl, Mariann G.
    Bathen, Tone F.
    Lundgren, Steinar
    Gribbestad, Ingrid S.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2011, 34 (05) : 1099 - 1109
  • [17] Diffusion-weighted MRI Findings Predict Pathologic Response in Neoadjuvant Treatment of Breast Cancer: The ACRIN 6698 Multicenter Trial
    Partridge, Savannah C.
    Zhang, Zheng
    Newitt, David C.
    Gibbs, Jessica E.
    Chenevert, Thomas L.
    Rosen, Mark A.
    Bolan, Patrick J.
    Marques, Helga S.
    Romanoff, Justin
    Cimino, Lisa
    Joe, Bonnie N.
    Umphrey, Heidi R.
    Ojeda-Fournier, Haydee
    Dogan, Basak
    Oh, Karen
    Abe, Hiroyuki
    Drukteinis, Jennifer S.
    Esserman, Laura J.
    Hylton, Nola M.
    RADIOLOGY, 2018, 289 (03) : 618 - 627
  • [18] Diffusion-weighted MRI findings Predict Pathologic Response in Neoadjuvant Treatment of Breast Cancer: The ACRIN 6698 Multicenter Trial
    Krome, Susanne
    ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2019, 191 (07): : 608 - 608
  • [19] Diffusion-weighted MR imaging in prediction of response to neoadjuvant chemotherapy in patients with breast cancer
    Hu, Xue-Ying
    Li, Ying
    Jin, Guan-Qiao
    Lai, Shao-Lv
    Huang, Xiang-Yang
    Su, Dan-Ke
    ONCOTARGET, 2017, 8 (45) : 79642 - 79649
  • [20] Role of diffusion-weighted imaging as an adjunct to contrast-enhanced breast MRI in evaluating residual breast cancer following neoadjuvant chemotherapy
    Hahn, Soo Yeon
    Ko, Eun Young
    Han, Boo-Kyung
    Shin, Jung Hee
    Ko, Eun Sook
    EUROPEAN JOURNAL OF RADIOLOGY, 2014, 83 (02) : 283 - 288