Integration of Diffusion-Weighted MRI Data and a Simple Mathematical Model to Predict Breast Tumor Cellularity During Neoadjuvant Chemotherapy

被引:37
|
作者
Atuegwu, Nkiruka C. [2 ]
Arlinghaus, Lori R. [2 ]
Li, Xia [2 ]
BrianWelch, E. [2 ]
Chakravarthy, Bapsi A. [3 ,4 ]
Gore, John C. [2 ,3 ,5 ,6 ,7 ]
Yankeelov, Thomas E. [1 ,2 ,3 ,5 ,6 ,8 ]
机构
[1] Vanderbilt Univ, Med Ctr, Inst Imaging Sci, Nashville, TN 37232 USA
[2] Vanderbilt Univ, Dept Radiol & Radiol Sci, Nashville, TN 37232 USA
[3] Vanderbilt Univ, Vanderbilt Ingram Canc Ctr, Nashville, TN 37232 USA
[4] Vanderbilt Univ, Dept Radiat Oncol, Nashville, TN 37232 USA
[5] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37232 USA
[6] Vanderbilt Univ, Dept Biomed Engn, Nashville, TN 37232 USA
[7] Vanderbilt Univ, Dept Mol Physiol & Biophys, Nashville, TN 37232 USA
[8] Vanderbilt Univ, Dept Canc Biol, Nashville, TN 37232 USA
基金
美国国家卫生研究院;
关键词
diffusion MRI; cellularity; tumor growth; mathematical model; breast cancer; GLIOMA GROWTH; FRACTION; CANCER; IMAGES;
D O I
10.1002/mrm.23203
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Diffusion-weighted magnetic resonance imaging data obtained early in the course of therapy can be used to estimate tumor proliferation rates, and the estimated rates can be used to predict tumor cellularity at the conclusion of therapy. Six patients underwent diffusion-weighted magnetic resonance imaging immediately before, after one cycle, and after all cycles of neoadjuvant chemotherapy. Apparent diffusion coefficient values were calculated for each voxel and for a whole tumor region of interest. Proliferation rates were estimated using the apparent diffusion coefficient data from the first two time points and then used with the logistic model of tumor growth to predict cellularity after therapy. The predicted number of tumor cells was then correlated to the corresponding experimental data. Pearson's correlation coefficient for the region of interest analysis yielded 0.95 (P = 0.004), and, after applying a 3 3 3 mean filter to the apparent diffusion coefficient data, the voxel-by-voxel analysis yielded a Pearson correlation coefficient of 0.70 +/- 0.10 (P < 0.05). Magn Reson Med 66:1689-1696, 2011. (C) 2011 Wiley Periodicals, Inc.
引用
收藏
页码:1689 / 1696
页数:8
相关论文
共 50 条
  • [21] DIFFUSION-WEIGHTED MRI FOR EARLY TUMOR RESPONSE ASSESSMENT DURING TREATMENT
    Vandecaveye, V.
    RADIOTHERAPY AND ONCOLOGY, 2012, 102 : S74 - S74
  • [22] A mechanically coupled reaction diffusion model of breast tumor response during neoadjuvant chemotherapy
    Weis, Jared A.
    Miga, Michael I.
    Li, Xia
    Arlinghaus, Lori R.
    Chakravarthy, A. Bapsi
    Abramson, Vandana
    Abramson, Richard G.
    Farley, Jaime
    Yankeelov, Thomas E.
    MEDICAL IMAGING 2013: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2013, 8672
  • [23] Interobserver Reproducibility of Diffusion-Weighted MRI in Monitoring Tumor Response to Neoadjuvant Therapy in Esophageal Cancer
    Kwee, Robert M.
    Dik, Alexander K.
    Sosef, Meindert N.
    Berendsen, Ralph C. M.
    Sassen, Sander
    Lammering, Guido
    Clarijs, Ruud
    Oostenbrug, Liekele E.
    Blom, Rachel L. G. M.
    Vliegen, Roy F. A.
    PLOS ONE, 2014, 9 (04):
  • [24] Diffusion-weighted MR Imaging: Pretreatment Prediction of Response to Neoadjuvant Chemotherapy in Patients with Breast Cancer
    Park, Sang Hee
    Moon, Woo Kyung
    Cho, Nariya
    Song, In Chan
    Chang, Jung Min
    Park, In-Ae
    Han, Wonshik
    Noh, Dong-Young
    RADIOLOGY, 2010, 257 (01) : 56 - 63
  • [25] Comparison of diffusion-weighted MR imaging and FDG PET/CT to predict pathological complete response to neoadjuvant chemotherapy in patients with breast cancer
    Sang Hee Park
    Woo Kyung Moon
    Nariya Cho
    Jung Min Chang
    Seock-Ah Im
    In Ae Park
    Keon Wook Kang
    Wonshik Han
    Dong-Young Noh
    European Radiology, 2012, 22 : 18 - 25
  • [26] Comparison of diffusion-weighted MR imaging and FDG PET/CT to predict pathological complete response to neoadjuvant chemotherapy in patients with breast cancer
    Park, Sang Hee
    Moon, Woo Kyung
    Cho, Nariya
    Chang, Jung Min
    Im, Seock-Ah
    Park, In Ae
    Kang, Keon Wook
    Han, Wonshik
    Noh, Dong-Young
    EUROPEAN RADIOLOGY, 2012, 22 (01) : 18 - 25
  • [27] Diffusion-weighted MRI for prediction of pathologic complete response in HER2-breast cancer treated with pembrolizumab plus neoadjuvant chemotherapy
    Li, Wen
    Le, Nu N.
    Onishi, Natsuko
    Newitt, David C.
    Gibbs, Jessica E.
    Wilmes, Lisa J.
    Kornak, John
    Partridge, Savannah C.
    LeStage, Barbara
    Price, Elissa R.
    Joe, Bonnie N.
    Esserman, Laura J.
    Hylton, Nola M.
    CANCER RESEARCH, 2022, 82 (04)
  • [28] Diffusion-weighted MRI in Multicenter Trials of Breast Cancer: A Useful Measure of Tumor Response?
    desouza, Nandita M.
    RADIOLOGY, 2018, 289 (03) : 628 - 629
  • [29] PD-DWI: Predicting Response to Neoadjuvant Chemotherapy in Invasive Breast Cancer with Physiologically-Decomposed Diffusion-Weighted MRI Machine-Learning Model
    Gilad, Maya
    Freiman, Moti
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT III, 2022, 13433 : 36 - 45
  • [30] Evaluation of pathologic response and residual tumor cellularity following neoadjuvant chemotherapy predict prognosis in breast cancer patients
    Gentile, Damiano
    Sagona, Andrea
    De Carlo, Camilla
    Fernandes, Bethania
    Grimaldi, Simone Di Maria
    Barbieri, Erika
    Gatzemeier, Wolfgang
    Scardina, Lorenzo
    Biondi, Ersilia
    Jacobs, Flavia
    Vatteroni, Giulia
    Tinterri, Corrado
    CANCER RESEARCH, 2023, 83 (05)