Integration of Diffusion-Weighted MRI Data and a Simple Mathematical Model to Predict Breast Tumor Cellularity During Neoadjuvant Chemotherapy

被引:37
|
作者
Atuegwu, Nkiruka C. [2 ]
Arlinghaus, Lori R. [2 ]
Li, Xia [2 ]
BrianWelch, E. [2 ]
Chakravarthy, Bapsi A. [3 ,4 ]
Gore, John C. [2 ,3 ,5 ,6 ,7 ]
Yankeelov, Thomas E. [1 ,2 ,3 ,5 ,6 ,8 ]
机构
[1] Vanderbilt Univ, Med Ctr, Inst Imaging Sci, Nashville, TN 37232 USA
[2] Vanderbilt Univ, Dept Radiol & Radiol Sci, Nashville, TN 37232 USA
[3] Vanderbilt Univ, Vanderbilt Ingram Canc Ctr, Nashville, TN 37232 USA
[4] Vanderbilt Univ, Dept Radiat Oncol, Nashville, TN 37232 USA
[5] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37232 USA
[6] Vanderbilt Univ, Dept Biomed Engn, Nashville, TN 37232 USA
[7] Vanderbilt Univ, Dept Mol Physiol & Biophys, Nashville, TN 37232 USA
[8] Vanderbilt Univ, Dept Canc Biol, Nashville, TN 37232 USA
基金
美国国家卫生研究院;
关键词
diffusion MRI; cellularity; tumor growth; mathematical model; breast cancer; GLIOMA GROWTH; FRACTION; CANCER; IMAGES;
D O I
10.1002/mrm.23203
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Diffusion-weighted magnetic resonance imaging data obtained early in the course of therapy can be used to estimate tumor proliferation rates, and the estimated rates can be used to predict tumor cellularity at the conclusion of therapy. Six patients underwent diffusion-weighted magnetic resonance imaging immediately before, after one cycle, and after all cycles of neoadjuvant chemotherapy. Apparent diffusion coefficient values were calculated for each voxel and for a whole tumor region of interest. Proliferation rates were estimated using the apparent diffusion coefficient data from the first two time points and then used with the logistic model of tumor growth to predict cellularity after therapy. The predicted number of tumor cells was then correlated to the corresponding experimental data. Pearson's correlation coefficient for the region of interest analysis yielded 0.95 (P = 0.004), and, after applying a 3 3 3 mean filter to the apparent diffusion coefficient data, the voxel-by-voxel analysis yielded a Pearson correlation coefficient of 0.70 +/- 0.10 (P < 0.05). Magn Reson Med 66:1689-1696, 2011. (C) 2011 Wiley Periodicals, Inc.
引用
收藏
页码:1689 / 1696
页数:8
相关论文
共 50 条
  • [1] Diffusion-Weighted MRI in Predicting the Efficacy of Neoadjuvant Chemotherapy of Breast Cancer
    Wu, J.
    Shen, K.
    Chen, X.
    Chen, C.
    Hu, Z.
    Liu, G.
    Di, G.
    Lu, J.
    Wu, J.
    Shao, Z.
    Shen, Z.
    CANCER RESEARCH, 2009, 69 (24) : 714S - 715S
  • [2] Assessment of diffusion-weighted MRI in predicting response to neoadjuvant chemotherapy in breast cancer patients
    Nathalie A. Hottat
    Dominique A. Badr
    Sophie Lecomte
    Tatiana Besse-Hammer
    Jacques C. Jani
    Mieke M. Cannie
    Scientific Reports, 13 (1)
  • [3] Diffusion-weighted MRI in pretreatment prediction of response to neoadjuvant chemotherapy in patients with breast cancer
    Richard, Raphael
    Thomassin, Isabelle
    Chapellier, Marion
    Scemama, Aurelie
    de Cremoux, Patricia
    Varna, Mariana
    Giacchetti, Sylvie
    Espie, Marc
    de Kerviler, Eric
    de Bazelaire, Cedric
    EUROPEAN RADIOLOGY, 2013, 23 (09) : 2420 - 2431
  • [4] Diffusion-weighted MRI in pretreatment prediction of response to neoadjuvant chemotherapy in patients with breast cancer
    Raphael Richard
    Isabelle Thomassin
    Marion Chapellier
    Aurélie Scemama
    Patricia de Cremoux
    Mariana Varna
    Sylvie Giacchetti
    Marc Espié
    Eric de Kerviler
    Cedric de Bazelaire
    European Radiology, 2013, 23 : 2420 - 2431
  • [5] Assessment of diffusion-weighted MRI in predicting response to neoadjuvant chemotherapy in breast cancer patients
    Hottat, Nathalie A.
    Badr, Dominique A.
    Lecomte, Sophie
    Besse-Hammer, Tatiana
    Jani, Jacques C.
    Cannie, Mieke M.
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [6] Parameterizing the Logistic Model of Tumor Growth by DW-MRI and DCE-MRI Data to Predict Treatment Response and Changes in Breast Cancer Cellularity during Neoadjuvant Chemotherapy
    Atuegwu, Nkiruka C.
    Arlinghaus, Lori R.
    Li, Xia
    Chakravarthy, A. Bapsi
    Abramson, Vandana G.
    Sanders, Melinda E.
    Yankeelov, Thomas E.
    TRANSLATIONAL ONCOLOGY, 2013, 6 (03): : 256 - 264
  • [7] Incorporation of diffusion-weighted magnetic resonance imaging data into a simple mathematical model of tumor growth
    Atuegwu, N. C.
    Colvin, D. C.
    Loveless, M. E.
    Xu, L.
    Gore, J. C.
    Yankeelov, T. E.
    PHYSICS IN MEDICINE AND BIOLOGY, 2012, 57 (01): : 225 - 240
  • [8] Pretreatment Diffusion-Weighted MRI Can Predict the Response to Neoadjuvant Chemotherapy in Patients with Nasopharyngeal Carcinoma
    Zhang, Guo-Yi
    Wang, Yue-Jian
    Liu, Jian-Ping
    Zhou, Xin-Han
    Xu, Zhi-Feng
    Chen, Xiang-Ping
    Xu, Tao
    Wei, Wei-Hong
    Zhang, Yang
    Huang, Ying
    BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [9] Intravoxel incoherent motion diffusion-weighted MRI for predicting response to neoadjuvant chemotherapy in breast cancer
    Kim, Yunju
    Kim, Sung Hun
    Lee, Hye Won
    Song, Byung Joo
    Kang, Bong Joo
    Lee, Ahwon
    Nam, Yoonho
    MAGNETIC RESONANCE IMAGING, 2018, 48 : 27 - 33
  • [10] ACRIN 6698 trial Quantitative diffusion-weighted MRI to predict pathologic response in neoadjuvant chemotherapy treatment of breast cancer.
    Partridge, Savannah C.
    Zhang, Zheng
    Newitt, David C.
    Gibbs, Jessica E.
    Chenevert, Thomas L.
    Rosen, Mark Alan
    Bolan, Patrick J.
    Marques, Helga
    Esserman, Laura
    Hylton, Nola M.
    JOURNAL OF CLINICAL ONCOLOGY, 2017, 35