On functional misspecification of covariates in the Cox regression model

被引:21
|
作者
Gerds, TA [1 ]
Schumacher, M [1 ]
机构
[1] Univ Freiburg, Inst Med Biometry & Med Informat, D-79104 Freiburg, Germany
关键词
Breslow estimator; covariate link; model misspecification; partial likelihood;
D O I
10.1093/biomet/88.2.572
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Model misspecification is discussed for the analysis of censored survival data with the Cox regression model. The maximum partial likelihood estimator for covariate effects has an asymptotic normal distribution under model misspecification (Lin & Wei, 1989). Situations where the assumed functional form for covariates is wrong are considered in a general framework in which we also derive the limit of Breslow's (1972) estimator. Furthermore, we give explicit expressions for the asymptotic variance of the maximum partial likelihood estimator. Numerical values for the errors of the maximum partial likelihood estimator and of the usual variance estimator are obtained for functional misspecification of a single relevant covariate and looking at the effect of a first factor, representing treatment or something similar, for functional wrong incorporation of auxiliary covariate measurements. In the latter situations we analyse the impact of dependence between the covariates.
引用
收藏
页码:572 / 580
页数:9
相关论文
共 50 条
  • [31] MODEL MISSPECIFICATION IN PROPORTIONAL HAZARDS REGRESSION
    ANDERSON, GL
    FLEMING, TR
    [J]. BIOMETRIKA, 1995, 82 (03) : 527 - 541
  • [32] Identifying nonproportional covariates in the Cox model
    Kraus, David
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2008, 37 (04) : 617 - 625
  • [33] Determination of the functional form of the relationship of covariates to the log hazard ratio in a Cox model
    Ganguli, B.
    Naskar, M.
    Malloy, E. J.
    Eisen, E. A.
    [J]. JOURNAL OF APPLIED STATISTICS, 2015, 42 (05) : 1091 - 1105
  • [34] Cox regression of clustered event times with covariates missing not at random
    Liu, Li
    Liu, Yanyan
    Xiong, Yi
    Hu, X. Joan
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2019, 46 (04) : 1315 - 1346
  • [35] Forward regression for Cox models with high-dimensional covariates
    Hong, Hyokyoung G.
    Zheng, Qi
    Li, Yi
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 173 : 268 - 290
  • [36] Time-dependent effects of fixed covariates in Cox regression
    Verweij, PJM
    vanHouwelingen, HC
    [J]. BIOMETRICS, 1995, 51 (04) : 1550 - 1556
  • [37] Time-varying covariates and coefficients in Cox regression models
    Zhang, Zhongheng
    Reinikainen, Jaakko
    Adeleke, Kazeem Adedayo
    Pieterse, Marcel E.
    Groothuis-Oudshoorn, Catharina G. M.
    [J]. ANNALS OF TRANSLATIONAL MEDICINE, 2018, 6 (07)
  • [38] Understanding the Cox regression models with time-change covariates
    Zhou, M
    [J]. AMERICAN STATISTICIAN, 2001, 55 (02): : 153 - 155
  • [39] Cox regression analysis for distorted covariates with an unknown distortion function
    Liu, Yanyan
    Wu, Yuanshan
    Zhang, Jing
    Zhou, Haibo
    [J]. BIOMETRICAL JOURNAL, 2021, 63 (05) : 968 - 983
  • [40] On Misspecification Tests for Stochastic Linear Regression Model
    Mahaboob, B.
    Prasad, S. Vijay
    Praveen, J. Peter
    Donthi, Ranadheer
    Venkateswarlu, B.
    [J]. RECENT TRENDS IN PURE AND APPLIED MATHEMATICS, 2019, 2177