On functional misspecification of covariates in the Cox regression model

被引:21
|
作者
Gerds, TA [1 ]
Schumacher, M [1 ]
机构
[1] Univ Freiburg, Inst Med Biometry & Med Informat, D-79104 Freiburg, Germany
关键词
Breslow estimator; covariate link; model misspecification; partial likelihood;
D O I
10.1093/biomet/88.2.572
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Model misspecification is discussed for the analysis of censored survival data with the Cox regression model. The maximum partial likelihood estimator for covariate effects has an asymptotic normal distribution under model misspecification (Lin & Wei, 1989). Situations where the assumed functional form for covariates is wrong are considered in a general framework in which we also derive the limit of Breslow's (1972) estimator. Furthermore, we give explicit expressions for the asymptotic variance of the maximum partial likelihood estimator. Numerical values for the errors of the maximum partial likelihood estimator and of the usual variance estimator are obtained for functional misspecification of a single relevant covariate and looking at the effect of a first factor, representing treatment or something similar, for functional wrong incorporation of auxiliary covariate measurements. In the latter situations we analyse the impact of dependence between the covariates.
引用
收藏
页码:572 / 580
页数:9
相关论文
共 50 条
  • [41] MISSPECIFICATION IN REGRESSION
    HOCKING, RR
    [J]. AMERICAN STATISTICIAN, 1974, 28 (01): : 39 - 40
  • [42] ON THE CONSEQUENCES OF MODEL MISSPECIFICATION IN LOGISTIC-REGRESSION
    BEGG, MD
    LAGAKOS, S
    [J]. ENVIRONMENTAL HEALTH PERSPECTIVES, 1990, 87 : 69 - 75
  • [43] Rank Regression under Possible Model Misspecification
    Wang, Lan
    [J]. NONPARAMETRIC STATISTICS AND MIXTURE MODELS: A FESTSCHRIFT IN HONOR OF THOMAS P HETTMANSPERGER, 2011, : 317 - 335
  • [44] CHARACTERIZATION ON MISSPECIFICATION IN GENERAL LINEAR REGRESSION MODEL
    ROSENBERG, SH
    LEVY, PS
    [J]. BIOMETRICS, 1972, 28 (04) : 1129 - 1133
  • [45] Cox regression analysis with missing covariates via nonparametric multiple imputation
    Hsu, Chiu-Hsieh
    Yu, Mandi
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (06) : 1676 - 1688
  • [46] Cox Regression in Nested Case-Control Studies with Auxiliary Covariates
    Liu, Mengling
    Lu, Wenbin
    Tseng, Chi-hong
    [J]. BIOMETRICS, 2010, 66 (02) : 374 - 381
  • [47] A Product Partition Model With Regression on Covariates
    Mueller, Peter
    Quintana, Fernando
    Rosner, Gary L.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2011, 20 (01) : 260 - 278
  • [48] Model selection in principal covariates regression
    Vervloet, Marlies
    Van Deun, Katrijn
    Van den Noortgate, Wim
    Ceulemans, Eva
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2016, 151 : 26 - 33
  • [49] Cox regression with accurate covariates unascertainable: A nonparametric-correction approach
    Huang, YJ
    Wang, CY
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2000, 95 (452) : 1209 - 1219
  • [50] Evaluating functional covariate-environment interactions in the Cox regression model
    Zhou, Ling
    Li, Haoqi
    Lin, Huazhen
    Song, Peter X. -K.
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2019, 47 (02): : 204 - 221