On Misspecification Tests for Stochastic Linear Regression Model

被引:0
|
作者
Mahaboob, B. [1 ]
Prasad, S. Vijay [1 ]
Praveen, J. Peter [1 ]
Donthi, Ranadheer [2 ]
Venkateswarlu, B. [3 ]
机构
[1] Koneru Lakshmaih Educ Fdn, Dept Math, Vaddeswaram 522502, India
[2] St Martins Engn Coll, Dept Math, Hyderabad, Telangana, India
[3] Vellore Inst Technol, Dept Math, Vellore 632014, Tamil Nadu, India
关键词
D O I
10.1063/1.5135214
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This research article explores some misspecification tests for stochastic linear regression model viz. Durbin-Watson test, Ramsey's regression specification error test, Lagrange's multiplier test, and UTTS' rainbow test. Any type of error occurred in the set of underlying assumptions of a stochastic linear regression model and the associated inferences lead to 'specification errors'. These errors will present particularly in specifying the error vector and the data matrix X. Generally specification errors are caused by the inclusion of irrelevant independent variables or exclusion of relevant independent variables in the stochastic linear regression model. Ivan Krivy et.al, in 2000 in their research article depicted two stochastic algorithms which are useful in estimating the parameters of nonlinear regression models. Russell Davidson et al. in 1984 (see [2]), in their paper, developed a simple computational procedure for performing a wide variety of model specification tests. In 1993, Ludger Ruschendorf et.al in their research article constructed as nonlinear regression representations of general stochastic processes so that they got a particular special regression representations on Markov chains and of certain m- dependent sequences.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] CHARACTERIZATION ON MISSPECIFICATION IN GENERAL LINEAR REGRESSION MODEL
    ROSENBERG, SH
    LEVY, PS
    [J]. BIOMETRICS, 1972, 28 (04) : 1129 - 1133
  • [2] Beta regression misspecification tests
    Cribari-Neto, Francisco
    Santana-e-Silva, Jose Jairo
    Vasconcellos, Klaus L. P.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2024, 233
  • [3] Structural Break Tests Robust to Regression Misspecification
    Morshed, Alaa Abi
    Andreou, Elena
    Boldea, Otilia
    [J]. ECONOMETRICS, 2018, 6 (02):
  • [4] On Stochastic Linear Regression Model Selection
    Praveen, J. Peter
    Mahaboob, B.
    Donthi, Ranadheer
    Prasad, S. Vijay
    Venkateswarlu, B.
    [J]. RECENT TRENDS IN PURE AND APPLIED MATHEMATICS, 2019, 2177
  • [5] THE EFFECTS OF MISSPECIFICATION OF A REGRESSION-MODEL
    NAGELKERKE, NJD
    HART, AAM
    OOSTING, J
    [J]. BIOMETRICAL JOURNAL, 1987, 29 (02) : 141 - 145
  • [6] Regression diagnostic under model misspecification
    Chien, Li-Chu
    Tsou, Tsung-Shan
    [J]. JOURNAL OF APPLIED STATISTICS, 2007, 34 (05) : 563 - 575
  • [7] MODEL MISSPECIFICATION IN PROPORTIONAL HAZARDS REGRESSION
    ANDERSON, GL
    FLEMING, TR
    [J]. BIOMETRIKA, 1995, 82 (03) : 527 - 541
  • [8] New tests of heteroskedasticity in linear regression model
    A. Račkauskas
    D. Zuokas
    [J]. Lithuanian Mathematical Journal, 2007, 47 : 248 - 265
  • [9] New tests of heteroskedasticity in linear regression model
    Rackauskas, A.
    Zuokas, D.
    [J]. LITHUANIAN MATHEMATICAL JOURNAL, 2007, 47 (03) : 248 - 265
  • [10] INFLUENCE DIAGNOSTICS IN THE LINEAR REGRESSION MODEL WITH STOCHASTIC LINEAR RESTRICTIONS
    Liu, S.
    Ahmed, S. E.
    Ma, L. Y.
    [J]. PAKISTAN JOURNAL OF STATISTICS, 2009, 25 (04): : 647 - 662