On functional misspecification of covariates in the Cox regression model

被引:21
|
作者
Gerds, TA [1 ]
Schumacher, M [1 ]
机构
[1] Univ Freiburg, Inst Med Biometry & Med Informat, D-79104 Freiburg, Germany
关键词
Breslow estimator; covariate link; model misspecification; partial likelihood;
D O I
10.1093/biomet/88.2.572
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Model misspecification is discussed for the analysis of censored survival data with the Cox regression model. The maximum partial likelihood estimator for covariate effects has an asymptotic normal distribution under model misspecification (Lin & Wei, 1989). Situations where the assumed functional form for covariates is wrong are considered in a general framework in which we also derive the limit of Breslow's (1972) estimator. Furthermore, we give explicit expressions for the asymptotic variance of the maximum partial likelihood estimator. Numerical values for the errors of the maximum partial likelihood estimator and of the usual variance estimator are obtained for functional misspecification of a single relevant covariate and looking at the effect of a first factor, representing treatment or something similar, for functional wrong incorporation of auxiliary covariate measurements. In the latter situations we analyse the impact of dependence between the covariates.
引用
收藏
页码:572 / 580
页数:9
相关论文
共 50 条
  • [1] Cox regression model with randomly censored covariates
    Atem, Folefac D.
    Matsouaka, Roland A.
    Zimmern, Vincent E.
    [J]. BIOMETRICAL JOURNAL, 2019, 61 (04) : 1020 - 1032
  • [2] Cox regression models with functional covariates for survival data
    Gellar, Jonathan E.
    Colantuoni, Elizabeth
    Needham, Dale M.
    Crainiceanu, Ciprian M.
    [J]. STATISTICAL MODELLING, 2015, 15 (03) : 256 - 278
  • [3] Diagnostic measures for the Cox regression model with missing covariates
    Zhu, Hongtu
    Ibrahim, Joseph G.
    Chen, Ming-Hui
    [J]. BIOMETRIKA, 2015, 102 (04) : 907 - 923
  • [4] Bayesian variable selection for the Cox regression model with missing covariates
    Joseph G. Ibrahim
    Ming-Hui Chen
    Sungduk Kim
    [J]. Lifetime Data Analysis, 2008, 14 : 496 - 520
  • [5] Bias due to aggregation of individual covariates in the cox regression model
    Abrahamowicz, M
    du Berger, R
    Krewski, D
    Burnett, R
    Bartlett, G
    Tamblyn, RM
    Leffondré, K
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2004, 160 (07) : 696 - 706
  • [6] Cox regression model with mismeasured covariates or missing covariate data
    Zhong, M
    Sen, PK
    Cai, JW
    [J]. AMERICAN STATISTICAL ASSOCIATION 1996 PROCEEDINGS OF THE BIOMETRICS SECTION, 1996, : 323 - 328
  • [7] Variable Selection in the Cox Regression Model with Covariates Missing at Random
    Garcia, Ramon I.
    Ibrahim, Joseph G.
    Zhu, Hongtu
    [J]. BIOMETRICS, 2010, 66 (01) : 97 - 104
  • [8] Bayesian variable selection for the Cox regression model with missing covariates
    Ibrahim, Joseph G.
    Chen, Ming-Hui
    Kim, Sungduk
    [J]. LIFETIME DATA ANALYSIS, 2008, 14 (04) : 496 - 520
  • [9] Misspecification of Cox regression models with composite endpoints
    Wu, Longyang
    Cook, Richard J.
    [J]. STATISTICS IN MEDICINE, 2012, 31 (28) : 3545 - 3562
  • [10] Cox regression with dependent error in covariates
    Huang, Yijian
    Wang, Ching-Yun
    [J]. BIOMETRICS, 2018, 74 (01) : 118 - 126