Cox regression models with functional covariates for survival data

被引:25
|
作者
Gellar, Jonathan E. [1 ]
Colantuoni, Elizabeth [1 ]
Needham, Dale M. [2 ]
Crainiceanu, Ciprian M. [1 ]
机构
[1] Johns Hopkins Univ, Bloomberg Sch Publ Hlth, Dept Biostat, Baltimore, MD USA
[2] Johns Hopkins Univ, Sch Med, Pulmonary & Crit Care Med & Phys Med & Rehabil, Baltimore, MD USA
基金
美国国家卫生研究院;
关键词
functional data analysis; Survival analysis; Cox proportional hazards model; nonparametric statistics; intensive care unit; GENERALIZED LINEAR-MODELS; HAZARD REGRESSION; SPLINES; LIKELIHOOD; RATES; RISK;
D O I
10.1177/1471082X14565526
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We extend the Cox proportional hazards model to cases when the exposure is a densely sampled functional process, measured at baseline. The fundamental idea is to combine penalized signal regression with methods developed for mixed effects proportional hazards models. The model is fit by maximizing the penalized partial likelihood, with smoothing parameters estimated by a likelihood-based criterion such as AIC or EPIC. The model may be extended to allow for multiple functional predictors, time varying coefficients, and missing or unequally spaced data. Methods were inspired by and applied to a study of the association between time to death after hospital discharge and daily measures of disease severity collected in the intensive care unit, among survivors of acute respiratory distress syndrome.
引用
收藏
页码:256 / 278
页数:23
相关论文
共 50 条
  • [1] On functional misspecification of covariates in the Cox regression model
    Gerds, TA
    Schumacher, M
    [J]. BIOMETRIKA, 2001, 88 (02) : 572 - 580
  • [2] Cox regression for current status data with mismeasured covariates
    Wen, Chi-Chung
    Huang, Steve Y. H.
    Chen, Yau-Hung
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2011, 39 (01): : 73 - 88
  • [3] Cox Regression Models with Time-Varying Covariates Applied to Survival Success of Young Firms
    Anavatan, Aygul
    Karaoz, Murat
    Polat, Ozgur
    Uslu, Enes E.
    Kalyoncu, Huseyin
    [J]. JOURNAL OF ECONOMIC AND SOCIAL STUDIES, 2013, 3 (02): : 52 - 68
  • [4] Forward regression for Cox models with high-dimensional covariates
    Hong, Hyokyoung G.
    Zheng, Qi
    Li, Yi
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 173 : 268 - 290
  • [5] Time-varying covariates and coefficients in Cox regression models
    Zhang, Zhongheng
    Reinikainen, Jaakko
    Adeleke, Kazeem Adedayo
    Pieterse, Marcel E.
    Groothuis-Oudshoorn, Catharina G. M.
    [J]. ANNALS OF TRANSLATIONAL MEDICINE, 2018, 6 (07)
  • [6] Understanding the Cox regression models with time-change covariates
    Zhou, M
    [J]. AMERICAN STATISTICIAN, 2001, 55 (02): : 153 - 155
  • [7] Cox regression model with mismeasured covariates or missing covariate data
    Zhong, M
    Sen, PK
    Cai, JW
    [J]. AMERICAN STATISTICAL ASSOCIATION 1996 PROCEEDINGS OF THE BIOMETRICS SECTION, 1996, : 323 - 328
  • [8] Cox Models With Smooth Functional Effect of Covariates Measured With Error
    Cheng, Yu-Jen
    Crainiceanu, Ciprian M.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (487) : 1144 - 1154
  • [9] EFFECTS OF OMITTING COVARIATES IN COX MODEL FOR SURVIVAL-DATA
    BRETAGNOLLE, J
    HUBERCAROL, C
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 1988, 15 (02) : 125 - 138
  • [10] Cox regression with dependent error in covariates
    Huang, Yijian
    Wang, Ching-Yun
    [J]. BIOMETRICS, 2018, 74 (01) : 118 - 126