Automatic pose estimation for range images on the GPU

被引:0
|
作者
Germann, Marcel [1 ]
Breitenstein, Michael D. [2 ]
Park, In Kyu [3 ]
Pfister, Hanspeter [4 ]
机构
[1] Swiss Fed Inst Technol, Comp Graph Lab, ETH, Zurich, Switzerland
[2] Swiss Fed Inst Technol, Comp Vis Lab, ETH, Zurich, Switzerland
[3] Inha Univ, Incheon, South Korea
[4] Mitsubishi Elect Res Lab, Cambridge, MA USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Object pose (location and orientation) estimation is a common task in many computer vision applications. Although many methods exist, most algorithms need manual initialization and lack robustness to illumination variation, appearance change, and partial occlusions. We propose a fast method for automatic pose estimation without manual initialization based on shape matching of a 3D model to a range image of the scene. We developed a new error function to compare the input range image to pre-computed range maps of the 3D model. We use the tremendous data-parallel processing performance of modern graphics hardware to evaluate and minimize the error function on many range images in parallel. Our algorithm is simple and accurately estimates the pose of partially occluded objects in cluttered scenes in about one second.
引用
收藏
页码:81 / +
页数:2
相关论文
共 50 条
  • [1] Fast and automatic object pose estimation for range images on the GPU
    Park, In Kyu
    Germann, Marcel
    Breitenstein, Michael D.
    Pfister, Hanspeter
    MACHINE VISION AND APPLICATIONS, 2010, 21 (05) : 749 - 766
  • [2] Fast and automatic object pose estimation for range images on the GPU
    In Kyu Park
    Marcel Germann
    Michael D. Breitenstein
    Hanspeter Pfister
    Machine Vision and Applications, 2010, 21 : 749 - 766
  • [3] Automatic Ear Landmark Localization, Segmentation, and Pose Classification in Range Images
    Lei, Jiajia
    You, Xinge
    Abdel-Mottaleb, Mohamed
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2016, 46 (02): : 165 - 176
  • [4] Automatic Real-Time Pose Estimation of Machinery from Images
    Bertels, Marcel
    Jutzi, Boris
    Ulrich, Markus
    SENSORS, 2022, 22 (07)
  • [5] Uncooperative Spacecraft Pose Estimation Based on Intensity and Range Images Fusion
    Jiang, Cuicui
    Guo, Pengyu
    Hu, Qinglei
    Long, Chengrong
    Li, Dongyu
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [6] Real-time face pose estimation from single range images
    Breitenstein, Michael D.
    Kuettel, Daniel
    Weise, Thibaut
    van Gool, Luc
    Pfister, Hanspeter
    2008 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-12, 2008, : 3613 - +
  • [7] Automatic Pose Estimation Using Contour Information from X-Ray Images
    Soltow, Erik
    Rosenhahn, Bodo
    IMAGE AND VIDEO TECHNOLOGY - PSIVT 2015 WORKSHOPS, 2016, 9555 : 246 - 257
  • [8] Pose estimation in automatic object recognition
    Chang, CY
    Hoepner, R
    OPTICAL PATTERN RECOGNITION VII, 1996, 2752 : 233 - 240
  • [9] 3D head pose estimation using range images for face recognition
    Song, H
    Sohn, K
    2004 8TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION, VOLS 1-3, 2004, : 1256 - 1261
  • [10] Human Pose Estimation in Stereo Images
    Lallemand, Joe
    Szczot, Magdalena
    Ilic, Slobodan
    ARTICULATED MOTION AND DEFORMABLE OBJECTS, AMDO 2014, 2014, 8563 : 10 - 19