Automatic pose estimation for range images on the GPU

被引:0
|
作者
Germann, Marcel [1 ]
Breitenstein, Michael D. [2 ]
Park, In Kyu [3 ]
Pfister, Hanspeter [4 ]
机构
[1] Swiss Fed Inst Technol, Comp Graph Lab, ETH, Zurich, Switzerland
[2] Swiss Fed Inst Technol, Comp Vis Lab, ETH, Zurich, Switzerland
[3] Inha Univ, Incheon, South Korea
[4] Mitsubishi Elect Res Lab, Cambridge, MA USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Object pose (location and orientation) estimation is a common task in many computer vision applications. Although many methods exist, most algorithms need manual initialization and lack robustness to illumination variation, appearance change, and partial occlusions. We propose a fast method for automatic pose estimation without manual initialization based on shape matching of a 3D model to a range image of the scene. We developed a new error function to compare the input range image to pre-computed range maps of the 3D model. We use the tremendous data-parallel processing performance of modern graphics hardware to evaluate and minimize the error function on many range images in parallel. Our algorithm is simple and accurately estimates the pose of partially occluded objects in cluttered scenes in about one second.
引用
收藏
页码:81 / +
页数:2
相关论文
共 50 条
  • [41] Pose Estimation of Landscape Images Using DEM and Orthophotos
    Produit, Timothee
    Tuia, Devis
    Golay, Francois
    Strecha, Christoph
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON COMPUTER VISION IN REMOTE SENSING, 2012, : 209 - 214
  • [42] Pose estimation from range data for space applications
    Simard, L
    Ferrie, FP
    Laurin, D
    VISION, MODELING, AND VISUALIZATION 2003, 2003, : 143 - 150
  • [43] Towards global consistent pose estimation from images
    ten Hagen, SHG
    Kröse, BJA
    2002 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-3, PROCEEDINGS, 2002, : 466 - 471
  • [44] Nonlinear body pose estimation from depth images
    Grest, D
    Woetzel, J
    Koch, R
    PATTERN RECOGNITION, PROCEEDINGS, 2005, 3663 : 285 - 292
  • [45] 3D Object Pose Refinement in Range Images
    Zabulis, Xenophon
    Lourakis, Manolis
    Koutlemanis, Panagiotis
    COMPUTER VISION SYSTEMS (ICVS 2015), 2015, 9163 : 263 - 274
  • [46] POSE DETERMINATION OF KNOWN OBJECTS FROM SPARSE RANGE IMAGES
    ARCHIBALD, C
    MERRITT, C
    INTELLIGENT AUTONOMOUS SYSTEMS 2, VOLS 1 AND 2, 1989, : 185 - 195
  • [47] Automatic registration of multiple range images by the local log-polar range images
    Masuda, Takeshi
    THIRD INTERNATIONAL SYMPOSIUM ON 3D DATA PROCESSING, VISUALIZATION, AND TRANSMISSION, PROCEEDINGS, 2007, : 216 - 223
  • [48] Automatic mountain detection and pose estimation for teleoperation of lunar rovers
    Cozman, F
    Krotkov, E
    EXPERIMENTAL ROBOTICS V, 1998, 232 : 207 - 215
  • [49] An industrial solution to object pose estimation for automatic semiconductor fabrication
    HongGen Luo
    LiMin Zhu
    Han Ding
    The International Journal of Advanced Manufacturing Technology, 2007, 32 : 969 - 977
  • [50] AUTOMATIC AND ROBUST HEAD POSE ESTIMATION BY BLOCK ENERGY MAP
    Li, Wei
    Huang, Yan
    Peng, Jingliang
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 3357 - 3361