Automatic pose estimation for range images on the GPU

被引:0
|
作者
Germann, Marcel [1 ]
Breitenstein, Michael D. [2 ]
Park, In Kyu [3 ]
Pfister, Hanspeter [4 ]
机构
[1] Swiss Fed Inst Technol, Comp Graph Lab, ETH, Zurich, Switzerland
[2] Swiss Fed Inst Technol, Comp Vis Lab, ETH, Zurich, Switzerland
[3] Inha Univ, Incheon, South Korea
[4] Mitsubishi Elect Res Lab, Cambridge, MA USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Object pose (location and orientation) estimation is a common task in many computer vision applications. Although many methods exist, most algorithms need manual initialization and lack robustness to illumination variation, appearance change, and partial occlusions. We propose a fast method for automatic pose estimation without manual initialization based on shape matching of a 3D model to a range image of the scene. We developed a new error function to compare the input range image to pre-computed range maps of the 3D model. We use the tremendous data-parallel processing performance of modern graphics hardware to evaluate and minimize the error function on many range images in parallel. Our algorithm is simple and accurately estimates the pose of partially occluded objects in cluttered scenes in about one second.
引用
收藏
页码:81 / +
页数:2
相关论文
共 50 条
  • [21] Head pose estimation on low resolution images
    Gourier, Nicolas
    Maisonnasse, Jerome
    Hall, Daniela
    Crowley, James L.
    MULTIMODAL TECHNOLOGIES FOR PERCEPTION OF HUMANS, 2007, 4122 : 270 - 280
  • [22] Unsupervised Human Pose Estimation on Depth Images
    Blanc-Beyne, Thibault
    Carlier, Axel
    Mouysset, Sandrine
    Charvillat, Vincent
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: APPLIED DATA SCIENCE TRACK, ECML PKDD 2020, PT IV, 2021, 12460 : 358 - 373
  • [23] Rotational motion estimation for ISAR via triangle pose difference on two range-Doppler images
    Yeh, C. -M.
    Xu, J.
    Peng, Y. -N.
    Xia, X. -G.
    Wang, X. -T.
    IET RADAR SONAR AND NAVIGATION, 2010, 4 (04): : 528 - 536
  • [24] 3D human pose estimation from range images with depth difference and geodesic distance
    Zhang, Wenhui
    Kong, Dehui
    Wang, Shaofan
    Wang, Zhiyong
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 59 : 272 - 282
  • [25] Identification and Pose under Severe Occlusion in Range Images
    Merchan, P.
    Adan, A.
    Salamanca, S.
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 989 - +
  • [26] A Shared Pose Regression Network for Pose Estimation of Objects from RGB Images
    Bengtson, Stefan Hein
    Astrom, Hampus
    Moeslund, Thomas B.
    Topp, Elin A.
    Krueger, Volker
    2022 16TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY & INTERNET-BASED SYSTEMS, SITIS, 2022, : 91 - 97
  • [27] A stochastic algorithm for automatic hand pose and motion estimation
    Francesca Cordella
    Francesco Di Corato
    Bruno Siciliano
    Loredana Zollo
    Medical & Biological Engineering & Computing, 2017, 55 : 2197 - 2208
  • [28] A stochastic algorithm for automatic hand pose and motion estimation
    Cordella, Francesca
    Di Corato, Francesco
    Siciliano, Bruno
    Zollo, Loredana
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2017, 55 (12) : 2197 - 2208
  • [29] Automatic Pose Estimation of Uncalibrated Multi-View Images Based on a Planar Object with a Predefined Contour Model
    Li, Cailin
    Zhou, Langming
    Chen, Wenhe
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2016, 5 (12)
  • [30] Automatic SAR Target Recognition and Pose Estimation. Part 1. Geometric Methods for Pose Estimation
    Namas, Tarik
    Hodzic, Migdat
    ADVANCED TECHNOLOGIES, SYSTEMS, AND APPLICATIONS II, 2018, 28 : 876 - 900