Fast and automatic object pose estimation for range images on the GPU

被引:25
|
作者
Park, In Kyu [1 ]
Germann, Marcel [2 ]
Breitenstein, Michael D. [3 ]
Pfister, Hanspeter [4 ]
机构
[1] Inha Univ, Sch Informat & Commun Engn, Inchon 402751, South Korea
[2] ETH, Swiss Fed Inst Technol, Comp Graph Lab, CH-8092 Zurich, Switzerland
[3] ETH, Swiss Fed Inst Technol, Comp Vis Lab, CH-8092 Zurich, Switzerland
[4] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
关键词
Object pose estimation; Bin picking; Range image processing; General purpose GPU programming; Iterative closest point; Euclidean distance transform; Downhill simplex; CUDA; RECOGNITION; REGISTRATION; MODEL; SEGMENTATION;
D O I
10.1007/s00138-009-0209-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a pose estimation method for rigid objects from single range images. Using 3D models of the objects, many pose hypotheses are compared in a data-parallel version of the downhill simplex algorithm with an image-based error function. The pose hypothesis with the lowest error value yields the pose estimation (location and orientation), which is refined using ICP. The algorithm is designed especially for implementation on the GPU. It is completely automatic, fast, robust to occlusion and cluttered scenes, and scales with the number of different object types. We apply the system to bin picking, and evaluate it on cluttered scenes. Comprehensive experiments on challenging synthetic and real-world data demonstrate the effectiveness of our method.
引用
下载
收藏
页码:749 / 766
页数:18
相关论文
共 50 条
  • [1] Fast and automatic object pose estimation for range images on the GPU
    In Kyu Park
    Marcel Germann
    Michael D. Breitenstein
    Hanspeter Pfister
    Machine Vision and Applications, 2010, 21 : 749 - 766
  • [2] Automatic pose estimation for range images on the GPU
    Germann, Marcel
    Breitenstein, Michael D.
    Park, In Kyu
    Pfister, Hanspeter
    3DIM 2007: SIXTH INTERNATIONAL CONFERENCE ON 3-D DIGITAL IMAGING AND MODELING, PROCEEDINGS, 2007, : 81 - +
  • [3] Pose estimation in automatic object recognition
    Chang, CY
    Hoepner, R
    OPTICAL PATTERN RECOGNITION VII, 1996, 2752 : 233 - 240
  • [4] A Dynamic Programming Approach for Fast and Robust Object Pose Recognition from Range Images
    Zach, Christopher
    Penate-Sanchez, Adrian
    Minh-Tri Pham
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 196 - 203
  • [5] Automatic Dataset Generation for Object Pose Estimation
    Tshilombo, Kalenga-Bimpambu
    Yoshiyasu, Yusuke
    Gabas, Antonio
    Suzui, Kota
    SA'18: SIGGRAPH ASIA 2018 POSTERS, 2018,
  • [6] Automatic Estimation of the Object Pose for Industrial Robots
    Xu Haili
    Wang Sun'an
    Zhang Xingguo
    Hua Guoran
    IST: 2009 IEEE INTERNATIONAL WORKSHOP ON IMAGING SYSTEMS AND TECHNIQUES, 2009, : 348 - +
  • [7] Object pose estimation in underwater acoustic images
    Murino, V
    Foresti, GL
    Trucco, A
    INTERNATIONAL CONFERENCE ON IMAGE PROCESSING - PROCEEDINGS, VOL I, 1997, : 873 - 876
  • [8] PERCH 2.0: Fast and Accurate GPU-based Perception via Search for Object Pose Estimation
    Agarwal, Aditya
    Han, Yupeng
    Likhachev, Axim
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 10633 - 10640
  • [9] Fully automatic estimation of object pose for segmentation initialization: Application to cardiac MR and echocardiography images
    Ma, Meng
    Bosch, Johan G.
    Reiber, Johan H. C.
    Lelieveldt, Boudewijn P. F.
    MEDICAL IMAGING 2007: IMAGE PROCESSING, PTS 1-3, 2007, 6512
  • [10] Fast Uncertainty Quantification for Deep Object Pose Estimation
    Shi, Guanya
    Zhu, Yifeng
    Tremblay, Jonathan
    Birchfield, Stan
    Ramos, Fabio
    Anandkumar, Animashree
    Zhu, Yuke
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 5200 - 5207