Fast and automatic object pose estimation for range images on the GPU

被引:25
|
作者
Park, In Kyu [1 ]
Germann, Marcel [2 ]
Breitenstein, Michael D. [3 ]
Pfister, Hanspeter [4 ]
机构
[1] Inha Univ, Sch Informat & Commun Engn, Inchon 402751, South Korea
[2] ETH, Swiss Fed Inst Technol, Comp Graph Lab, CH-8092 Zurich, Switzerland
[3] ETH, Swiss Fed Inst Technol, Comp Vis Lab, CH-8092 Zurich, Switzerland
[4] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
关键词
Object pose estimation; Bin picking; Range image processing; General purpose GPU programming; Iterative closest point; Euclidean distance transform; Downhill simplex; CUDA; RECOGNITION; REGISTRATION; MODEL; SEGMENTATION;
D O I
10.1007/s00138-009-0209-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a pose estimation method for rigid objects from single range images. Using 3D models of the objects, many pose hypotheses are compared in a data-parallel version of the downhill simplex algorithm with an image-based error function. The pose hypothesis with the lowest error value yields the pose estimation (location and orientation), which is refined using ICP. The algorithm is designed especially for implementation on the GPU. It is completely automatic, fast, robust to occlusion and cluttered scenes, and scales with the number of different object types. We apply the system to bin picking, and evaluate it on cluttered scenes. Comprehensive experiments on challenging synthetic and real-world data demonstrate the effectiveness of our method.
引用
下载
收藏
页码:749 / 766
页数:18
相关论文
共 50 条
  • [21] Object Pose Estimation Using Color Images and Predicted Depth Maps
    Hoang, Dinh-Cuong
    Tan, Phan Xuan
    Nguyen, Anh-Nhat
    Vu, Duy-Quang
    Vu, van-Duc
    Nguyen, Thu-Uyen
    Duong, Quang-Tri
    Nguyen, van-Thiep
    Hoang, Ngoc-Anh
    Phan, Khanh-Toan
    Tran, Duc-Thanh
    Ho, Ngoc-Trung
    Tran, Cong-Trinh
    Duong, van-Hiep
    Ngo, Phuc-Quan
    IEEE ACCESS, 2024, 12 : 65444 - 65461
  • [22] On Object Symmetries and 6D Pose Estimation from Images
    Pitteri, Giorgia
    Ramamonjisoa, Michael
    Ilic, Slobodan
    Lepetit, Vincent
    2019 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2019), 2019, : 614 - 622
  • [23] 3D Object Pose Estimation from Binarized Images
    Kagami, Shingo
    Morita, Masaru
    Hashimoto, Koichi
    2012 PROCEEDINGS OF SICE ANNUAL CONFERENCE (SICE), 2012, : 759 - 761
  • [24] Pose estimation and object tracking using 2D images
    Casado, Fernando
    Luis Lapido, Yago
    Losada, Diego P.
    Santana-Alonso, Alejandro
    27TH INTERNATIONAL CONFERENCE ON FLEXIBLE AUTOMATION AND INTELLIGENT MANUFACTURING, FAIM2017, 2017, 11 : 63 - 71
  • [25] Point matching as a classlification problem for fast and robust object pose estimation
    Lepetit, V
    Pilet, J
    Fua, P
    PROCEEDINGS OF THE 2004 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, 2004, : 244 - 250
  • [26] Fast Circular Object Localization and Pose Estimation for Robotic Bin Picking
    Luo, Linyao
    Luo, Yanfei
    Lu, Hong
    Yuan, Haowei
    Tang, Xuehua
    Zhang, Wenqiang
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2017, PT II, 2018, 10736 : 529 - 538
  • [27] Enhancing object pose estimation for RGB images in cluttered scenesEnhancing object pose estimation for RGB images in cluttered scenesM. Al-Selwi et al.
    Metwalli Al-Selwi
    Huang Ning
    Yin Gao
    Yan Chao
    Qiming Li
    Jun Li
    Scientific Reports, 15 (1)
  • [28] Automatic Real-Time Pose Estimation of Machinery from Images
    Bertels, Marcel
    Jutzi, Boris
    Ulrich, Markus
    SENSORS, 2022, 22 (07)
  • [29] Uncooperative Spacecraft Pose Estimation Based on Intensity and Range Images Fusion
    Jiang, Cuicui
    Guo, Pengyu
    Hu, Qinglei
    Long, Chengrong
    Li, Dongyu
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [30] Modeling Pose/Appearance Relations for Improved Object Localization and Pose Estimation in 2D images
    Teney, Damien
    Piater, Justus
    PATTERN RECOGNITION AND IMAGE ANALYSIS, IBPRIA 2013, 2013, 7887 : 59 - 68