Nonlinear denoising and analysis of neuroimages with kernel principal component analysis and pre-image estimation

被引:23
|
作者
Rasmussen, Peter Mondrup [1 ,2 ]
Abrahamsen, Trine Julie [1 ]
Madsen, Kristoffer Hougaard [1 ,3 ]
Hansen, Lars Kai [1 ]
机构
[1] Tech Univ Denmark, DTU Informat, Kongens Lyngby, Denmark
[2] Aarhus Univ Hosp, Danish Natl Res Fdn, Ctr Functionally Integrat Neurosci, Aarhus, Denmark
[3] Univ Copenhagen, Hvidovre Hosp, Danish Res Ctr Magnet Resonance, DK-1168 Copenhagen, Denmark
基金
英国医学研究理事会;
关键词
Multivariate analysis; Classification; Decoding; Nonlinear modeling; Kernel PCA; Pre-image estimation; NPAIRS resampling; FMRI DATA; QUANTITATIVE-EVALUATION; PREDICTION; NPAIRS; ACTIVATION; PATTERNS; REMOVAL; MODEL; PCA;
D O I
10.1016/j.neuroimage.2012.01.096
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We investigate the use of kernel principal component analysis (PCA) and the inverse problem known as pre-image estimation in neuroimaging: i) We explore kernel PCA and pre-image estimation as a means for image denoising as part of the image preprocessing pipeline. Evaluation of the denoising procedure is performed within a data-driven split-half evaluation framework. ii) We introduce manifold navigation for exploration of a nonlinear data manifold, and illustrate how pre-image estimation can be used to generate brain maps in the continuum between experimentally defined brain states/classes. We base these illustrations on two fMRI BOLD data sets - one from a simple finger tapping experiment and the other from an experiment on object recognition in the ventral temporal lobe. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1807 / 1818
页数:12
相关论文
共 50 条
  • [1] Nonlinear Feature Extraction Using Kernel Principal Component Analysis With Non-negative Pre-image
    Kallas, Maya
    Honeine, Paul
    Richard, Cedric
    Amoud, Hassan
    Francis, Clovis
    2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2010, : 3642 - 3645
  • [2] Regularized locality preserving learning of pre-image problem in kernel principal component
    Zheng, Wei-Shi
    Lai, Jian-huang
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2006, : 456 - +
  • [3] Tangent Hyperplane Kernel Principal Component Analysis for Denoising
    Im, Joon-Ku
    Apley, Daniel W.
    Runger, George C.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2012, 23 (04) : 644 - 656
  • [4] Fault estimation of nonlinear processes using kernel principal component analysis
    Kallas, Maya
    Mourot, Gilles
    Maquin, Didier
    Ragot, Jose
    2015 EUROPEAN CONTROL CONFERENCE (ECC), 2015, : 3197 - 3202
  • [5] Projection-free kernel principal component analysis for denoising
    Anh Tuan Bui
    Im, Joon-Ku
    Apley, Daniel W.
    Runger, George C.
    NEUROCOMPUTING, 2019, 357 : 163 - 176
  • [6] Manifold Denoising by Nonlinear Robust Principal Component Analysis
    Lyu, He
    Sha, Ningyu
    Qin, Shuyang
    Yan, Ming
    Xie, Yuying
    Wang, Rongrong
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [7] Image Denoising Using Multiresolution Principal Component Analysis
    Malini, S.
    Moni, R. S.
    2015 GLOBAL CONFERENCE ON COMMUNICATION TECHNOLOGIES (GCCT), 2015, : 4 - 7
  • [8] Interpretable time series kernel analytics by pre-image estimation
    Tran, Thi Phuong Thao
    Douzal-Chouakria, Ahlame
    Yazdi, Saeed Varasteh
    Honeine, Paul
    Gallinari, Patrick
    ARTIFICIAL INTELLIGENCE, 2020, 286
  • [9] Iterative kernel principal component analysis for image modeling
    Kim, KI
    Franz, MO
    Schölkopf, B
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (09) : 1351 - 1366
  • [10] Kernel l1-norm principal component analysis for denoising
    Ling, Xiao
    Bui, Anh
    Brooks, Paul
    OPTIMIZATION LETTERS, 2023, 18 (09) : 2133 - 2148