Nonlinear denoising and analysis of neuroimages with kernel principal component analysis and pre-image estimation

被引:23
|
作者
Rasmussen, Peter Mondrup [1 ,2 ]
Abrahamsen, Trine Julie [1 ]
Madsen, Kristoffer Hougaard [1 ,3 ]
Hansen, Lars Kai [1 ]
机构
[1] Tech Univ Denmark, DTU Informat, Kongens Lyngby, Denmark
[2] Aarhus Univ Hosp, Danish Natl Res Fdn, Ctr Functionally Integrat Neurosci, Aarhus, Denmark
[3] Univ Copenhagen, Hvidovre Hosp, Danish Res Ctr Magnet Resonance, DK-1168 Copenhagen, Denmark
基金
英国医学研究理事会;
关键词
Multivariate analysis; Classification; Decoding; Nonlinear modeling; Kernel PCA; Pre-image estimation; NPAIRS resampling; FMRI DATA; QUANTITATIVE-EVALUATION; PREDICTION; NPAIRS; ACTIVATION; PATTERNS; REMOVAL; MODEL; PCA;
D O I
10.1016/j.neuroimage.2012.01.096
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We investigate the use of kernel principal component analysis (PCA) and the inverse problem known as pre-image estimation in neuroimaging: i) We explore kernel PCA and pre-image estimation as a means for image denoising as part of the image preprocessing pipeline. Evaluation of the denoising procedure is performed within a data-driven split-half evaluation framework. ii) We introduce manifold navigation for exploration of a nonlinear data manifold, and illustrate how pre-image estimation can be used to generate brain maps in the continuum between experimentally defined brain states/classes. We base these illustrations on two fMRI BOLD data sets - one from a simple finger tapping experiment and the other from an experiment on object recognition in the ventral temporal lobe. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1807 / 1818
页数:12
相关论文
共 50 条
  • [31] Nonlinear kernel density principal component analysis with application to climate data
    Pulkkinen, Seppo
    STATISTICS AND COMPUTING, 2016, 26 (1-2) : 471 - 492
  • [32] Nonlinear fault diagnosis method based on kernel principal component analysis
    Yan, Weiwu
    Zhang, Chunkai
    Shao, Huihe
    High Technology Letters, 2005, 11 (02) : 189 - 192
  • [33] Monitoring of a machining process using kernel principal component analysis and kernel density estimation
    Wo Jae Lee
    Gamini P. Mendis
    Matthew J. Triebe
    John W. Sutherland
    Journal of Intelligent Manufacturing, 2020, 31 : 1175 - 1189
  • [34] NONLINEAR DATA RECONCILIATION METHOD BASED ON KERNEL PRINCIPAL COMPONENT ANALYSIS
    Yan Weiwu Shao HuiheDepartment of Automation
    Chinese Journal of Mechanical Engineering, 2003, (02) : 117 - 119
  • [35] Nonlinear Process Monitoring Using Improved Kernel Principal Component Analysis
    Wei, Chihang
    Chen, Junghui
    Song, Zhihuan
    PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 5838 - 5843
  • [36] Statistics Kernel Principal Component Analysis for Nonlinear Process Fault Detection
    Ma Hehe
    Hu Yi
    Shi Hongbo
    2011 9TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2011), 2011, : 431 - 436
  • [37] Adaptive kernel principal component analysis for nonlinear dynamic process monitoring
    Chouaib, Chakour
    Mohamed-Faouzi, Harkat
    Messaoud, Djeghaba
    2013 9TH ASIAN CONTROL CONFERENCE (ASCC), 2013,
  • [38] SUBSET KERNEL PRINCIPAL COMPONENT ANALYSIS
    Washizawa, Yoshikazu
    2009 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2009, : 357 - 362
  • [39] Robust Kernel Principal Component Analysis
    Huang, Su-Yun
    Yeh, Yi-Ren
    Eguchi, Shinto
    NEURAL COMPUTATION, 2009, 21 (11) : 3179 - 3213
  • [40] Adaptive kernel principal component analysis
    Ding, Mingtao
    Tian, Zheng
    Xu, Haixia
    SIGNAL PROCESSING, 2010, 90 (05) : 1542 - 1553