Nonlinear denoising and analysis of neuroimages with kernel principal component analysis and pre-image estimation

被引:23
|
作者
Rasmussen, Peter Mondrup [1 ,2 ]
Abrahamsen, Trine Julie [1 ]
Madsen, Kristoffer Hougaard [1 ,3 ]
Hansen, Lars Kai [1 ]
机构
[1] Tech Univ Denmark, DTU Informat, Kongens Lyngby, Denmark
[2] Aarhus Univ Hosp, Danish Natl Res Fdn, Ctr Functionally Integrat Neurosci, Aarhus, Denmark
[3] Univ Copenhagen, Hvidovre Hosp, Danish Res Ctr Magnet Resonance, DK-1168 Copenhagen, Denmark
基金
英国医学研究理事会;
关键词
Multivariate analysis; Classification; Decoding; Nonlinear modeling; Kernel PCA; Pre-image estimation; NPAIRS resampling; FMRI DATA; QUANTITATIVE-EVALUATION; PREDICTION; NPAIRS; ACTIVATION; PATTERNS; REMOVAL; MODEL; PCA;
D O I
10.1016/j.neuroimage.2012.01.096
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We investigate the use of kernel principal component analysis (PCA) and the inverse problem known as pre-image estimation in neuroimaging: i) We explore kernel PCA and pre-image estimation as a means for image denoising as part of the image preprocessing pipeline. Evaluation of the denoising procedure is performed within a data-driven split-half evaluation framework. ii) We introduce manifold navigation for exploration of a nonlinear data manifold, and illustrate how pre-image estimation can be used to generate brain maps in the continuum between experimentally defined brain states/classes. We base these illustrations on two fMRI BOLD data sets - one from a simple finger tapping experiment and the other from an experiment on object recognition in the ventral temporal lobe. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1807 / 1818
页数:12
相关论文
共 50 条
  • [41] Monitoring of a machining process using kernel principal component analysis and kernel density estimation
    Lee, Wo Jae
    Mendis, Gamini P.
    Triebe, Matthew J.
    Sutherland, John W.
    JOURNAL OF INTELLIGENT MANUFACTURING, 2020, 31 (05) : 1175 - 1189
  • [42] Sparse kernel principal component analysis
    Tipping, ME
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 13, 2001, 13 : 633 - 639
  • [43] Streaming Kernel Principal Component Analysis
    Ghashami, Mina
    Perry, Daniel J.
    Phillips, Jeff M.
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 1365 - 1374
  • [44] Incremental kernel principal component analysis
    Chin, Tat-Jun
    Suter, David
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (06) : 1662 - 1674
  • [45] Greedy Kernel Principal Component Analysis
    Franc, Vojtech
    Hlavac, Vaclav
    COGNITIVE VISION SYSTEMS: SAMPLING THE SPECTRUM OF APPROACHERS, 2006, 3948 : 87 - 105
  • [46] Image Denoising by Principal Basis Analysis
    Sun, Hong
    Sang, Cheng-Wei
    Liu, Chen-Guang
    MIPPR 2015: MULTISPECTRAL IMAGE ACQUISITION, PROCESSING, AND ANALYSIS, 2015, 9811
  • [47] The Pre-image Problem and Kernel PCA for Speech Enhancement
    Leitner, Christina
    Pernkopf, Franz
    ADVANCES IN NONLINEAR SPEECH PROCESSING, 2011, 7015 : 199 - 206
  • [48] A New Guided Image Denoising by Principal Component Analysis with Local Pixel Grouping
    Liu, Xinji
    Dai, Tao
    2018 IEEE FOURTH INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM), 2018,
  • [49] SAR Image Denoising via Clustering-Based Principal Component Analysis
    Xu, Linlin
    Li, Jonathan
    Shu, Yuanming
    Peng, Junhuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (11): : 6858 - 6869
  • [50] Nonlinear Discriminant Principal Component Analysis for Image Classification and Reconstruction
    Filisbino, Tiene Andre
    Giraldi, Gilson Antonio
    Thomaz, Carlos Eduardo
    2018 7TH BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2018, : 312 - 317