Projection-free kernel principal component analysis for denoising

被引:9
|
作者
Anh Tuan Bui [1 ]
Im, Joon-Ku [2 ]
Apley, Daniel W. [1 ]
Runger, George C. [3 ]
机构
[1] Northwestern Univ, Dept Ind Engn & Management Sci, 2145 Sheridan Rd, Evanston, IL 60208 USA
[2] Anthem Inc, 233 South Wacker Dr,Suite 3700, Chicago, IL 60606 USA
[3] Arizona State Univ, Sch Comp Informat & Decis Syst Engn, 699 S Mill Ave, Tempe, AZ 85281 USA
关键词
Image processing; Feature space; Pattern recognition; Preimage problem; PRE-IMAGE PROBLEM; PCA; SUBSPACE;
D O I
10.1016/j.neucom.2019.04.042
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Kernel principal component analysis (KPCA) forms the basis for a class of methods commonly used for denoising a set of multivariate observations. Most KPCA algorithms involve two steps: projection and preimage approximation. We argue that this two-step procedure can be inefficient and result in poor denoising. We propose an alternative projection-free KPCA denoising approach that does not involve the usual projection and subsequent preimage approximation steps. In order to denoise an observation, our approach performs a single line search along the gradient descent direction of the squared projection error. The rationale is that this moves an observation towards the underlying manifold that represents the noiseless data in the most direct manner possible. We demonstrate that the approach is simple, computationally efficient, robust, and sometimes provides substantially better denoising than the standard KPCA algorithm. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:163 / 176
页数:14
相关论文
共 50 条
  • [1] Tangent Hyperplane Kernel Principal Component Analysis for Denoising
    Im, Joon-Ku
    Apley, Daniel W.
    Runger, George C.
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2012, 23 (04) : 644 - 656
  • [2] Kernel l1-norm principal component analysis for denoising
    Ling, Xiao
    Bui, Anh
    Brooks, Paul
    [J]. OPTIMIZATION LETTERS, 2023,
  • [3] Principal Component Projection Without Principal Component Analysis
    Frostig, Roy
    Musco, Cameron
    Musco, Christopher
    Sidford, Aaron
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [4] Nonlinear denoising and analysis of neuroimages with kernel principal component analysis and pre-image estimation
    Rasmussen, Peter Mondrup
    Abrahamsen, Trine Julie
    Madsen, Kristoffer Hougaard
    Hansen, Lars Kai
    [J]. NEUROIMAGE, 2012, 60 (03) : 1807 - 1818
  • [5] SUBSET KERNEL PRINCIPAL COMPONENT ANALYSIS
    Washizawa, Yoshikazu
    [J]. 2009 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2009, : 357 - 362
  • [6] Robust Kernel Principal Component Analysis
    Huang, Su-Yun
    Yeh, Yi-Ren
    Eguchi, Shinto
    [J]. NEURAL COMPUTATION, 2009, 21 (11) : 3179 - 3213
  • [7] Sparse kernel principal component analysis
    Tipping, ME
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 13, 2001, 13 : 633 - 639
  • [8] Streaming Kernel Principal Component Analysis
    Ghashami, Mina
    Perry, Daniel J.
    Phillips, Jeff M.
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 1365 - 1374
  • [9] Adaptive kernel principal component analysis
    Ding, Mingtao
    Tian, Zheng
    Xu, Haixia
    [J]. SIGNAL PROCESSING, 2010, 90 (05) : 1542 - 1553
  • [10] Incremental kernel principal component analysis
    Chin, Tat-Jun
    Suter, David
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (06) : 1662 - 1674