Projection-free kernel principal component analysis for denoising

被引:9
|
作者
Anh Tuan Bui [1 ]
Im, Joon-Ku [2 ]
Apley, Daniel W. [1 ]
Runger, George C. [3 ]
机构
[1] Northwestern Univ, Dept Ind Engn & Management Sci, 2145 Sheridan Rd, Evanston, IL 60208 USA
[2] Anthem Inc, 233 South Wacker Dr,Suite 3700, Chicago, IL 60606 USA
[3] Arizona State Univ, Sch Comp Informat & Decis Syst Engn, 699 S Mill Ave, Tempe, AZ 85281 USA
关键词
Image processing; Feature space; Pattern recognition; Preimage problem; PRE-IMAGE PROBLEM; PCA; SUBSPACE;
D O I
10.1016/j.neucom.2019.04.042
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Kernel principal component analysis (KPCA) forms the basis for a class of methods commonly used for denoising a set of multivariate observations. Most KPCA algorithms involve two steps: projection and preimage approximation. We argue that this two-step procedure can be inefficient and result in poor denoising. We propose an alternative projection-free KPCA denoising approach that does not involve the usual projection and subsequent preimage approximation steps. In order to denoise an observation, our approach performs a single line search along the gradient descent direction of the squared projection error. The rationale is that this moves an observation towards the underlying manifold that represents the noiseless data in the most direct manner possible. We demonstrate that the approach is simple, computationally efficient, robust, and sometimes provides substantially better denoising than the standard KPCA algorithm. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:163 / 176
页数:14
相关论文
共 50 条
  • [41] Projection-free accelerated method for convex optimization
    Goncalves, Max L. N.
    Melo, Jefferson G.
    Monteiro, Renato D. C.
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2022, 37 (01): : 214 - 240
  • [42] Nonsmooth projection-free optimization with functional constraints
    Asgari, Kamiar
    Neely, Michael J.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2024,
  • [43] Projection-free Distributed Online Learning in Networks
    Zhang, Wenpeng
    Zhao, Peilin
    Zhu, Wenwu
    Hoi, Steven C. H.
    Zhang, Tong
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [44] Projection-free accelerated method for convex optimization
    Gonçalves, Max L. N.
    Melo, Jefferson G.
    Monteiro, Renato D. C.
    [J]. Optimization Methods and Software, 2022, 37 (01) : 214 - 240
  • [45] Manifold Denoising by Nonlinear Robust Principal Component Analysis
    Lyu, He
    Sha, Ningyu
    Qin, Shuyang
    Yan, Ming
    Xie, Yuying
    Wang, Rongrong
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [46] Image Denoising Using Multiresolution Principal Component Analysis
    Malini, S.
    Moni, R. S.
    [J]. 2015 GLOBAL CONFERENCE ON COMMUNICATION TECHNOLOGIES (GCCT), 2015, : 4 - 7
  • [47] Multivariate denoising using wavelets and principal component analysis
    Aminghafari, M
    Cheze, N
    Poggi, JM
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (09) : 2381 - 2398
  • [48] Projection-free Adaptive Regret with Membership Oracles
    Lu, Zhou
    Brukhim, Nataly
    Gradu, Paula
    Hazan, Elad
    [J]. INTERNATIONAL CONFERENCE ON ALGORITHMIC LEARNING THEORY, VOL 201, 2023, 201 : 1055 - 1073
  • [49] Projection-free nonconvex stochastic optimization on Riemannian manifolds
    Weber, Melanie
    Sra, Suvrit
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (04) : 3241 - 3271
  • [50] Accelerated Stochastic Gradient-free and Projection-free Methods
    Huang, Feihu
    Tao, Lue
    Chen, Songcan
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119