Machine Learning Based Predictive Models Are More Accurate Than TNM Staging in Predicting Survival in Patients With Pancreatic Cancer

被引:2
|
作者
Das, Amit [1 ]
Ngamruengphong, Saowanee [2 ]
机构
[1] Brophy Coll Preparatory, Phoenix, AZ USA
[2] Johns Hopkins Med, Baltimore, MD USA
来源
关键词
D O I
10.14309/01.ajg.0000589856.45106.e0
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
81
引用
收藏
页码:S48 / S48
页数:1
相关论文
共 50 条
  • [11] Externally validated HPV-based prognostic nomogram for oropharyngeal carcinoma patients yields more accurate predictions than TNM staging
    Velazquez, Emmanuel Rios
    Hoebers, Frank
    Aerts, Hugo J. W. L.
    Rietbergen, Michelle M.
    Brakenhoff, Ruud H.
    Leemans, Rene C.
    Speel, Ernst-Jan
    Straetmans, Jos
    Kremer, Bernd
    Lambin, Philippe
    [J]. RADIOTHERAPY AND ONCOLOGY, 2014, 113 (03) : 324 - 330
  • [12] Machine learning models for predicting survival in patients with ampullary adenocarcinoma
    Huang, Tao
    Huang, Liying
    Yang, Rui
    Li, Shuna
    He, Ningxia
    Feng, Aozi
    Li, Li
    Lyu, Jun
    [J]. ASIA-PACIFIC JOURNAL OF ONCOLOGY NURSING, 2022, 9 (12)
  • [13] ENDOSCOPIC ULTRASOUND (EUS) STAGING IN PATIENTS (PTS) WITH ESOPHAGEAL CANCER (ECA) IS MORE ACCURATE THAN CT AND CORRELATES WITH SURVIVAL
    GRESS, F
    IKENBERRY, S
    CONCES, D
    WONN, J
    KHRUSO, Q
    HAWES, R
    [J]. GASTROINTESTINAL ENDOSCOPY, 1995, 41 (04) : 349 - 349
  • [14] Machine learning models for predicting post-cystectomy recurrence and survival in bladder cancer patients
    Hasnain, Zaki
    Mason, Jeremy
    Gill, Karanvir
    Miranda, Gus
    Gill, Inderbir S.
    Kuhn, Peter
    Newton, Paul K.
    [J]. PLOS ONE, 2019, 14 (02):
  • [15] Do Machine Learning-Based Models Perform Better Than Clinical Models in Predicting Biochemical Outcome for Prostate Cancer Patients?
    Sun, L.
    Quon, H.
    Smith, W.
    Kirkby, C.
    [J]. MEDICAL PHYSICS, 2022, 49 (06) : E234 - E234
  • [16] MACHINE LEARNING MODELS FOR PREDICTING PATIENTS SURVIVAL AFTER LIVER TRANSPLANTATION
    Jarmulski, Wojciech
    Wieczorkowska, Alicja
    Trzaska, Mariusz
    Ciszek, Michal
    Paczek, Leszek
    [J]. COMPUTER SCIENCE-AGH, 2018, 19 (02): : 223 - 239
  • [17] Combination of TNM staging and pathway based risk score models in patients with gastric cancer
    Zhou, Yang-Yang
    Kang, Yan-Ting
    Chen, Chao
    Xu, Fan-Fan
    Wang, Hao-Nan
    Jin, Rong
    [J]. JOURNAL OF CELLULAR BIOCHEMISTRY, 2018, 119 (04) : 3608 - 3617
  • [18] A novel prognostic nomogram is more accurate than conventional staging systems for predicting survival after resection of hepatocellular carcinoma
    Cho, Clifford S.
    Gonen, Mithat
    Shia, Jinru
    Kattan, Michael W.
    Klimstra, David S.
    Jarnagin, William R.
    D'Angelica, Michael I.
    Blumgart, Leslie H.
    DeMatteo, Ronald P.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF SURGEONS, 2008, 206 (02) : 281 - 291
  • [19] Predictive models based on machine learning for bone metastasis in patients with diagnosed colorectal cancer
    Li, Tianhao
    Huang, Honghong
    Zhang, Shuocun
    Zhang, Yongdan
    Jing, Haoren
    Sun, Tianwei
    Zhang, Xipeng
    Lu, Liangfu
    Zhang, Mingqing
    [J]. FRONTIERS IN PUBLIC HEALTH, 2022, 10
  • [20] The IGCA staging system is more accurate than AJCC7 system in stratifying survival of patients with gastric cancer in stage III
    Ping Shu
    Jing Qin
    Kuntang Shen
    Weidong Chen
    Fenglin Liu
    Yong Fang
    Xuefei Wang
    Hongshan Wang
    Zhenbin Shen
    Yihong Sun
    Xinyu Qin
    [J]. BMC Cancer, 17