Machine Learning Based Predictive Models Are More Accurate Than TNM Staging in Predicting Survival in Patients With Pancreatic Cancer

被引:2
|
作者
Das, Amit [1 ]
Ngamruengphong, Saowanee [2 ]
机构
[1] Brophy Coll Preparatory, Phoenix, AZ USA
[2] Johns Hopkins Med, Baltimore, MD USA
来源
关键词
D O I
10.14309/01.ajg.0000589856.45106.e0
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
81
引用
收藏
页码:S48 / S48
页数:1
相关论文
共 50 条
  • [21] The IGCA staging system is more accurate than AJCC7 system in stratifying survival of patients with gastric cancer in stage III
    Shu, Ping
    Qin, Jing
    Shen, Kuntang
    Chen, Weidong
    Liu, Fenglin
    Fang, Yong
    Wang, Xuefei
    Wang, Hongshan
    Shen, Zhenbin
    Sun, Yihong
    Qin, Xinyu
    [J]. BMC CANCER, 2017, 17
  • [22] Author Correction: Machine learning for predicting survival of colorectal cancer patients
    Lucas Buk Cardoso
    Vanderlei Cunha Parro
    Stela Verzinhasse Peres
    Maria Paula Curado
    Gisele Aparecida Fernandes
    Victor Wünsch Filho
    Tatiana Natasha Toporcov
    [J]. Scientific Reports, 13
  • [23] Machine Learning Model for Predicting Postoperative Survival of Patients with Colorectal Cancer
    Osman, Mohamed Hosny
    Mohamed, Reham Hosny
    Sarhan, Hossam Mohamed
    Park, Eun Jung
    Baik, Seung Hyuk
    Lee, Kang Young
    Kang, Jeonghyun
    [J]. CANCER RESEARCH AND TREATMENT, 2022, 54 (02): : 517 - 524
  • [24] Survival of patients with pancreatic cancer predicted using machine learning techniques
    Hayward, J.
    Alvarez, S.
    Ruiz, C.
    Tseng, J.
    Sullivan, M.
    Whalen, G. F.
    [J]. ANNALS OF SURGICAL ONCOLOGY, 2007, 14 (02) : 114 - 114
  • [25] Is the 2009 endometrial cancer staging system more accurate based on survival, stage, grade, and histology?
    Page, B. R.
    Cooke, E. W.
    Pappas, L.
    Gaffney, D. K.
    [J]. GYNECOLOGIC ONCOLOGY, 2011, 123 (02) : 448 - 448
  • [26] Preoperative data-based deep learning model for predicting postoperative survival in pancreatic cancer patients
    Lee, Woohyung
    Park, Hyo Jung
    Lee, Hack-Jin
    Jun, Eunsung
    Song, Ki Byung
    Hwang, Dae Wook
    Lee, Jae Hoon
    Lim, Kyongmook
    Kim, Namkug
    Lee, Seung Soo
    Byun, Jae Ho
    Kim, Hyoung Jung
    Kim, Song Cheol
    [J]. INTERNATIONAL JOURNAL OF SURGERY, 2022, 105
  • [27] ROCK I Has More Accurate Prognostic Value than MET in Predicting Patient Survival in Colorectal Cancer
    Li, Jian
    Bharadwaj, Shruthi S.
    Guzman, Grace
    Vishnubhotla, Ramana
    Glover, Sarah C.
    [J]. ANTICANCER RESEARCH, 2015, 35 (06) : 3267 - 3273
  • [28] Survival analysis of breast cancer patients using machine learning models
    Keren Evangeline I.
    S. P. Angeline Kirubha
    J. Glory Precious
    [J]. Multimedia Tools and Applications, 2023, 82 : 30909 - 30928
  • [29] Survival analysis of breast cancer patients using machine learning models
    Evangeline, I. Keren
    Kirubha, S. P. Angeline
    Precious, J. Glory
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (20) : 30909 - 30928
  • [30] Predicting factors for survival of breast cancer patients using machine learning techniques
    Mogana Darshini Ganggayah
    Nur Aishah Taib
    Yip Cheng Har
    Pietro Lio
    Sarinder Kaur Dhillon
    [J]. BMC Medical Informatics and Decision Making, 19