Do Machine Learning-Based Models Perform Better Than Clinical Models in Predicting Biochemical Outcome for Prostate Cancer Patients?

被引:0
|
作者
Sun, L. [1 ,2 ]
Quon, H. [1 ,2 ]
Smith, W. [1 ,2 ]
Kirkby, C. [1 ,3 ]
机构
[1] Univ Calgary, Calgary, AB, Canada
[2] Tom Baker Canc Clin, Calgary, AB, Canada
[3] Jack Ady Canc Ctr, Lethbridge, AB, Canada
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
SU-H430-Ie
引用
收藏
页码:E234 / E234
页数:1
相关论文
共 50 条
  • [1] Machine Learning-Based Models Enhance the Prediction of Prostate Cancer
    Chen, Sunmeng
    Jian, Tengteng
    Chi, Changliang
    Liang, Yi
    Liang, Xiao
    Yu, Ying
    Jiang, Fengming
    Lu, Ji
    [J]. FRONTIERS IN ONCOLOGY, 2022, 12
  • [2] MACHINE LEARNING MODELS TO PERFORM ACTIVE SURVEILLANCE ON PROSTATE CANCER
    Van Booven, Derek
    Sandoval, Victor
    Ismael, Farhan
    Norman, Ahmed
    Kryvenko, Oleksandr
    Punnen, Sanoj
    Arora, Himanshu
    [J]. JOURNAL OF UROLOGY, 2022, 207 (05): : E898 - E899
  • [3] MACHINE LEARNING-BASED PREDICTIVE MODELS ARE MORE ACCURATE THAN TNM STAGE IN PREDICTING SURVIVAL IN PATIENTS WITH GASTRIC CANCER
    Das, Amit
    Mohapatra, Sonmoon
    Ngamruengphong, Saowanee
    [J]. GASTROENTEROLOGY, 2020, 158 (06) : S782 - S783
  • [4] Machine learning-based models for genomic predicting neoadjuvant Machine learning-based models for genomic predicting neoadjuvant chemotherapeutic sensitivity in cervical cancer chemotherapeutic sensitivity in cervical cancer
    Guo, Lu
    Wang, Wei
    Xie, Xiaodong
    Wang, Shuihua
    Zhang, Yudong
    [J]. BIOMEDICINE & PHARMACOTHERAPY, 2023, 159
  • [5] Machine learning-based models for prediction of erectile dysfunction in localized prostate cancer
    Hasannejadasl, H.
    Roumen, C.
    van der Poel, H.
    Vanneste, B.
    van Roermund, J.
    Aben, K.
    Kalendralis, P.
    Osong, B.
    Kiemeney, L.
    van Oort, I.
    Verwey, R.
    Hochstenbach, L.
    Bloemen-van Gurp, E. J.
    Dekker, A.
    Fijten, R.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2022, 170 : S683 - S684
  • [6] Machine Learning-based Models for Predicting the Penetration Depth of Concrete
    Li, Meng
    Wu, Haijun
    Dong, Heng
    Ren, Guang
    Zhang, Peng
    Huang, Fenglei
    [J]. Binggong Xuebao/Acta Armamentarii, 2023, 44 (12): : 3771 - 3782
  • [7] Machine learning-based models of toxicity in prostate cancer ultra-hypofractionated radiotherapy
    Pepa, M.
    Zaffaroni, M.
    Volpe, S.
    Marvaso, G.
    Isaksson, J. L.
    Barzaghi, S.
    Benigni, F.
    Callegari, M.
    Gismundi, A.
    La Fauci, F. M.
    Corrao, G.
    Augugliaro, M.
    Cattani, F.
    Baroni, G.
    De Momi, E.
    Orecchia, R.
    Jereczek-Fossa, B. A.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2021, 161 : S1522 - S1523
  • [8] A NEW MACHINE LEARNING-BASED MODEL IS MORE ACCURATE THAN TRADITIONAL MODELS IN PREDICTING SURVIVAL OF PATIENTS WITH ESOPHAGEAL ADENOCARCINOMA
    Mohapatra, Sonmoon
    Das, Amit
    Ngamruengphong, Saowanee
    [J]. GASTROENTEROLOGY, 2021, 160 (06) : S378 - S378
  • [9] Clinical application of machine learning models in patients with prostate cancer before prostatectomy
    Guerra, Adalgisa
    Orton, Matthew R.
    Wang, Helen
    Konidari, Marianna
    Maes, Kris
    Papanikolaou, Nickolas K.
    Koh, Dow Mu
    [J]. CANCER IMAGING, 2024, 24 (01)
  • [10] Clinical application of machine learning models in patients with prostate cancer before prostatectomy
    Adalgisa Guerra
    Matthew R. Orton
    Helen Wang
    Marianna Konidari
    Kris Maes
    Nickolas K. Papanikolaou
    Dow Mu Koh
    [J]. Cancer Imaging, 24