mvord: An R Package for Fitting Multivariate Ordinal Regression Models

被引:44
|
作者
Hirk, Rainer [1 ]
Hornik, Kurt [1 ]
Vana, Laura [1 ]
机构
[1] WU Wirtschaftsuniv Wien, Inst Stat & Math, Dept Finance Accounting & Stat, A-1020 Vienna, Austria
来源
JOURNAL OF STATISTICAL SOFTWARE | 2020年 / 93卷 / 04期
关键词
composite likelihood estimation; correlated ordinal data; multivariate ordinal logit regression model; multivariate ordinal probit regression model; R; LIKELIHOOD INFERENCE; DEBT;
D O I
10.18637/jss.v093.i04
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The R package mvord implements composite likelihood estimation in the class of multivariate ordinal regression models with a multivariate probit and a multivariate logit link. A flexible modeling framework for multiple ordinal measurements on the same subject is set up, which takes into consideration the dependence among the multiple observations by employing different error structures. Heterogeneity in the error structure across the subjects can be accounted for by the package, which allows for covariate dependent error structures. In addition, different regression coefficients and threshold parameters for each response are supported. If a reduction of the parameter space is desired, constraints on the threshold as well as on the regression coefficients can be specified by the user. The proposed multivariate framework is illustrated by means of a credit risk application.
引用
收藏
页码:1 / 41
页数:41
相关论文
共 50 条
  • [31] The R Package threg to Implement Threshold Regression Models
    Xiao, Tao
    Whitmore, G. A.
    He, Xin
    Lee, Mei-Ling Ting
    JOURNAL OF STATISTICAL SOFTWARE, 2015, 66 (08):
  • [32] FWDselect: An R Package for Variable Selection in Regression Models
    Sestelo, Marta
    Villanueva, Nora M.
    Meira-Machado, Luis
    Roca-Pardinas, Javier
    R JOURNAL, 2016, 8 (01): : 132 - 148
  • [33] mmm: An R package for analyzing multivariate longitudinal data with multivariate marginal models
    Asar, Oezguer
    Ilk, Ozlem
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2013, 112 (03) : 649 - 654
  • [34] MBRDR: R-package for response dimension reduction in multivariate regression
    Ahn, Heesung
    Yoo, Jae Keun
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2024, 31 (02) : 179 - 189
  • [35] Improved fitting of constrained multivariate regression models using automatic differentiation
    Ringrose, T
    Forth, S
    COMPSTAT 2002: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2002, : 383 - 388
  • [36] mexhaz: An R Package for Fitting Flexible Hazard-Based Regression Models for Overall and Excess Mortality with a Random Effect
    Charvat, Hadrien
    Belot, Aurelien
    JOURNAL OF STATISTICAL SOFTWARE, 2021, 98 (14): : 1 - 36
  • [37] Regression Models for Ordinal Outcomes
    French, Benjamin
    Shotwell, Matthew S.
    JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2022, 328 (08): : 772 - 773
  • [38] Bayesian Nonparametric Modeling for Multivariate Ordinal Regression
    DeYoreo, Maria
    Kottas, Athanasios
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2018, 27 (01) : 71 - 84
  • [39] Unmarked: An R Package for Fitting Hierarchical Models of Wildlife Occurrence and Abundance
    Fiske, Ian J.
    Chandler, Richard B.
    JOURNAL OF STATISTICAL SOFTWARE, 2011, 43 (10): : 1 - 23
  • [40] Multivariate ordinal regression for multiple repeated measurements
    Vana-Guer, Laura
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2024, 199