mvord: An R Package for Fitting Multivariate Ordinal Regression Models

被引:44
|
作者
Hirk, Rainer [1 ]
Hornik, Kurt [1 ]
Vana, Laura [1 ]
机构
[1] WU Wirtschaftsuniv Wien, Inst Stat & Math, Dept Finance Accounting & Stat, A-1020 Vienna, Austria
来源
JOURNAL OF STATISTICAL SOFTWARE | 2020年 / 93卷 / 04期
关键词
composite likelihood estimation; correlated ordinal data; multivariate ordinal logit regression model; multivariate ordinal probit regression model; R; LIKELIHOOD INFERENCE; DEBT;
D O I
10.18637/jss.v093.i04
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The R package mvord implements composite likelihood estimation in the class of multivariate ordinal regression models with a multivariate probit and a multivariate logit link. A flexible modeling framework for multiple ordinal measurements on the same subject is set up, which takes into consideration the dependence among the multiple observations by employing different error structures. Heterogeneity in the error structure across the subjects can be accounted for by the package, which allows for covariate dependent error structures. In addition, different regression coefficients and threshold parameters for each response are supported. If a reduction of the parameter space is desired, constraints on the threshold as well as on the regression coefficients can be specified by the user. The proposed multivariate framework is illustrated by means of a credit risk application.
引用
收藏
页码:1 / 41
页数:41
相关论文
共 50 条
  • [21] Continuous Ordinal Regression for Analysis of Visual Analogue Scales: The R Package ordinalCont
    Manuguerra, Maurizio
    Heller, Gillian Z.
    Ma, Jun
    JOURNAL OF STATISTICAL SOFTWARE, 2020, 96 (08): : 1 - 25
  • [22] ordinalgmifs: An R Package for Ordinal Regression in High-dimensional Data Settings
    Archer, Kellie J.
    Hou, Jiayi
    Zhou, Qing
    Ferber, Kyle
    Layne, John G.
    Gentry, Amanda E.
    CANCER INFORMATICS, 2014, 13 : 187 - 195
  • [23] Bayesian nonparametric multivariate ordinal regression
    Bao, Junshu
    Hanson, Timothy E.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2015, 43 (03): : 337 - 357
  • [24] BAMBI: An R Package for Fitting Bivariate Angular Mixture Models
    Chakraborty, Saptarshi
    Wong, Samuel W. K.
    JOURNAL OF STATISTICAL SOFTWARE, 2021, 99 (11): : 1 - 69
  • [25] Fitting Nonlinear Structural Equation Models in R with Package nlsem
    Umbach, Nora
    Naumann, Katharina
    Brandt, Holger
    Kelava, Augustin
    JOURNAL OF STATISTICAL SOFTWARE, 2017, 77 (07): : 1 - 20
  • [26] RealVAMS: An R Package for Fitting a Multivariate Value-added Model (VAM)
    Broatch, Jennifer
    Green, Jennifer
    Karl, Andrew
    R JOURNAL, 2018, 10 (01): : 22 - 30
  • [27] mipfp: An R Package for Multidimensional Array Fitting and Simulating Multivariate Bernoulli Distributions
    Barthelemy, Johan
    Suesse, Thomas
    JOURNAL OF STATISTICAL SOFTWARE, 2018, 86 (CN2): : 1 - 20
  • [28] ContaminatedMixt: An R Package for Fitting Parsimonious Mixtures of Multivariate Contaminated Normal Distributionsf
    Punzo, Antonio
    Mazza, Angelo
    McNicholas, Paul D.
    JOURNAL OF STATISTICAL SOFTWARE, 2018, 85 (10): : 1 - 25
  • [29] Fitting Flexible Parametric Regression Models with GLDreg in R
    Su, Steve
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2016, 15 (02) : 768 - 787
  • [30] The R Package trafo for Transforming Linear Regression Models
    Medina, Lily
    Kreutzmann, Ann-Kristin
    Rojas-Perilla, Natalia
    Castro, Piedad
    R JOURNAL, 2019, 11 (02): : 99 - 123