mvord: An R Package for Fitting Multivariate Ordinal Regression Models

被引:44
|
作者
Hirk, Rainer [1 ]
Hornik, Kurt [1 ]
Vana, Laura [1 ]
机构
[1] WU Wirtschaftsuniv Wien, Inst Stat & Math, Dept Finance Accounting & Stat, A-1020 Vienna, Austria
来源
JOURNAL OF STATISTICAL SOFTWARE | 2020年 / 93卷 / 04期
关键词
composite likelihood estimation; correlated ordinal data; multivariate ordinal logit regression model; multivariate ordinal probit regression model; R; LIKELIHOOD INFERENCE; DEBT;
D O I
10.18637/jss.v093.i04
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The R package mvord implements composite likelihood estimation in the class of multivariate ordinal regression models with a multivariate probit and a multivariate logit link. A flexible modeling framework for multiple ordinal measurements on the same subject is set up, which takes into consideration the dependence among the multiple observations by employing different error structures. Heterogeneity in the error structure across the subjects can be accounted for by the package, which allows for covariate dependent error structures. In addition, different regression coefficients and threshold parameters for each response are supported. If a reduction of the parameter space is desired, constraints on the threshold as well as on the regression coefficients can be specified by the user. The proposed multivariate framework is illustrated by means of a credit risk application.
引用
收藏
页码:1 / 41
页数:41
相关论文
共 50 条
  • [1] bqror: An R package for Bayesian Quantile Regression in Ordinal Models
    Maheshwari, Prajual
    Rahman, Mohammad Arshad
    R JOURNAL, 2023, 15 (02): : 39 - 55
  • [2] Fitting Additive Binomial Regression Models with the R Package blm
    Kovalchik, Stephanie
    Varadhan, Ravi
    JOURNAL OF STATISTICAL SOFTWARE, 2013, 54 (01): : 1 - 18
  • [3] mvMORPH: an R package for fitting multivariate evolutionary models to morphometric data
    Clavel, Julien
    Escarguel, Gilles
    Merceron, Gildas
    METHODS IN ECOLOGY AND EVOLUTION, 2015, 6 (11): : 1311 - 1319
  • [4] Regularized Ordinal Regression and the ordinalNet R Package
    Wurm, Michael J.
    Rathouz, Paul J.
    Hanlon, Bret M.
    JOURNAL OF STATISTICAL SOFTWARE, 2021, 99 (06): : 1 - 42
  • [5] FITTING REGRESSION-MODELS TO ORDINAL DATA
    JANSEN, J
    BIOMETRICAL JOURNAL, 1991, 33 (07) : 807 - 815
  • [6] Algorithm 1017: fuzzyreg: An R Package for Fitting Fuzzy Regression Models
    Skrabanek, Pavel
    Martinkova, Natalia
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2021, 47 (03):
  • [7] BNSP: an R Package for Fitting Bayesian Semiparametric Regression Models and Variable Selection
    Papageorgiou, Georgios
    R JOURNAL, 2018, 10 (02): : 526 - 548
  • [8] ordinalbayes: Fitting Ordinal Bayesian Regression Models to High-Dimensional Data Using R
    Archer, Kellie J.
    Seffernick, Anna Eames
    Sun, Shuai
    Zhang, Yiran
    STATS, 2022, 5 (02): : 371 - 384
  • [9] adjcatlogit, ccrlogit, and ucrlogit: Fitting ordinal logistic regression models
    Fagerland, Morten W.
    STATA JOURNAL, 2014, 14 (04): : 947 - 964
  • [10] Topicmodels: An R Package for Fitting Topic Models
    Gruen, Bettina
    Hornik, Kurt
    JOURNAL OF STATISTICAL SOFTWARE, 2011, 40 (13): : 1 - 30