bqror: An R package for Bayesian Quantile Regression in Ordinal Models

被引:0
|
作者
Maheshwari, Prajual [1 ]
Rahman, Mohammad Arshad [2 ]
机构
[1] Ogha Res, Quantitat Res, 2123 14th Main Rd HAL 3rd Stage, Bengaluru, Karnataka, India
[2] Indian Inst Technol Kanpur, Dept Econ Sci, Room 672,Fac Bldg, Kanpur, India
来源
R JOURNAL | 2023年 / 15卷 / 02期
关键词
MARGINAL LIKELIHOOD; BINARY;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This article describes an R package bqror that estimates Bayesian quantile regression in ordinal models introduced in Rahman (2016). The paper classifies ordinal models into two types and offers computationally efficient yet simple Markov chain Monte Carlo (MCMC) algorithms for estimating ordinal quantile regression. The generic ordinal model with 3 or more outcomes (labeled ORI model) is estimated by a combination of Gibbs sampling and Metropolis-Hastings algorithm, whereas an ordinal model with exactly 3 outcomes (labeled ORII model) is estimated using a Gibbs sampling algorithm only. In line with the Bayesian literature, we suggest using the marginal likelihood for comparing alternative quantile regression models and explain how to compute it. The models and their estimation procedures are illustrated via multiple simulation studies and implemented in two applications. The article also describes several functions contained within the bqror package, and illustrates their usage for estimation, inference, and assessing model fit.
引用
收藏
页码:39 / 55
页数:17
相关论文
共 50 条
  • [1] Bayesian Quantile Regression for Ordinal Models
    Rahman, Mohammad Arshad
    BAYESIAN ANALYSIS, 2016, 11 (01): : 1 - 24
  • [2] Brq: an R package for Bayesian quantile regression
    Alhamzawi, Rahim
    Ali, Haithem Taha Mohammad
    METRON-INTERNATIONAL JOURNAL OF STATISTICS, 2020, 78 (03): : 313 - 328
  • [3] Brq: an R package for Bayesian quantile regression
    Rahim Alhamzawi
    Haithem Taha Mohammad Ali
    METRON, 2020, 78 : 313 - 328
  • [4] Bayesian quantile regression for ordinal longitudinal data
    Alhamzawi, Rahim
    Ali, Haithem Taha Mohammad
    JOURNAL OF APPLIED STATISTICS, 2018, 45 (05) : 815 - 828
  • [5] Bayesian model selection in ordinal quantile regression
    Alhamzawi, Rahim
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 103 : 68 - 78
  • [6] mvord: An R Package for Fitting Multivariate Ordinal Regression Models
    Hirk, Rainer
    Hornik, Kurt
    Vana, Laura
    JOURNAL OF STATISTICAL SOFTWARE, 2020, 93 (04): : 1 - 41
  • [7] Regularized Ordinal Regression and the ordinalNet R Package
    Wurm, Michael J.
    Rathouz, Paul J.
    Hanlon, Bret M.
    JOURNAL OF STATISTICAL SOFTWARE, 2021, 99 (06): : 1 - 42
  • [8] Bayesian Nonlinear Quantile Regression Approach for Longitudinal Ordinal Data
    Hang Yang
    Zhuojian Chen
    Weiping Zhang
    Communications in Mathematics and Statistics, 2019, 7 : 123 - 140
  • [9] Bayesian single-index quantile regression for ordinal data
    Alhamzawi, Rahim
    Mohammad Ali, Haithem Taha
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2020, 49 (05) : 1306 - 1320
  • [10] Bayesian Nonlinear Quantile Regression Approach for Longitudinal Ordinal Data
    Yang, Hang
    Chen, Zhuojian
    Zhang, Weiping
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2019, 7 (02) : 123 - 140