Separation of variables and exact solutions of generalized nonlinear Klein-Gordon equations

被引:0
|
作者
Qu, CZ [1 ]
He, WL
Dou, JH
机构
[1] NW Univ Xian, Dept Math, Xian 710069, Peoples R China
[2] NW Univ Xian, Inst Modern Phys, Xian 710069, Peoples R China
来源
PROGRESS OF THEORETICAL PHYSICS | 2001年 / 105卷 / 03期
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the generalized conditional symmetry approach is developed to study the separation of variables for generalized nonlinear Klein-Gordon equations. We derive a complete list of canonical forms for a generalized nonlinear Klein-Gordon equation and a system of generalized nonlinear Klein-Gordon equations that submit ti, separation of variables in some coordinates. As a result, some exact solutions to the Bullough-Dodd equation, Liouville equation, Sine-Gordon equation and Sinh-Gordon equation are obtained. A symmetry group interpretation of the known results concerning separation of variables with the scalar Klein-Gordon equation is also given.
引用
收藏
页码:379 / 398
页数:20
相关论文
共 50 条
  • [31] Bifurcation and exact traveling wave solutions for the nonlinear Klein-Gordon equation
    Arab, Meraa
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (04): : 2643 - 2661
  • [32] New exact solutions of the Klein-Gordon Equation
    Yang, Yunjie
    Feng, Aifang
    He, Yan
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2014, 52 (02): : 188 - 196
  • [33] New Periodic Wave Solutions to Generalized Klein-Gordon and Benjamin Equations
    WU Guo-Jiang HAN Jia-Hua ZHANG Wen-Liang ZHANG Miao WANG Jun-Mao School of Physics and Material Science
    [J]. Communications in Theoretical Physics, 2007, 48 (11) : 815 - 818
  • [34] New periodic wave solutions to generalized Klein-Gordon and Benjamin equations
    Wu Guo-Jiang
    Han Jia-Hua
    Zhang Wen-Liang
    Zhang Miao
    Wang Jun-Mao
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2007, 48 (05) : 815 - 818
  • [35] EXISTENCE THEOREMS FOR GENERALIZED KLEIN-GORDON EQUATIONS
    NOUSSAIR, ES
    SWANSON, CA
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 8 (02) : 333 - 336
  • [36] BILINEAR FORM AND SOLITON SOLUTIONS FOR THE COUPLED NONLINEAR KLEIN-GORDON EQUATIONS
    Li, He
    Meng, Xiang-Hua
    Tian, Bo
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2012, 26 (15):
  • [37] New doubly periodic solutions for the coupled nonlinear Klein-Gordon equations
    Liu, CP
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2005, 43 (01) : 13 - 16
  • [38] Global solutions for nonlinear Klein-Gordon equations in infinite homogeneous waveguides
    Fang, Daoyuan
    Zhong, Sijia
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 231 (01) : 212 - 234
  • [39] New Doubly Periodic Solutions for the Coupled Nonlinear Klein-Gordon Equations
    LIU Chun-Ping Institute of Mathematics
    [J]. Communications in Theoretical Physics, 2005, 43 (01) : 13 - 16
  • [40] On asymptotic stability of stationary solutions to nonlinear wave and Klein-Gordon equations
    Komech, A
    Vainberg, B
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1996, 134 (03) : 227 - 248