Global solutions for nonlinear Klein-Gordon equations in infinite homogeneous waveguides

被引:3
|
作者
Fang, Daoyuan [1 ]
Zhong, Sijia [1 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
Klein-Gordon; waveguides; global existence;
D O I
10.1016/j.jde.2006.07.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove a global existence result for nonlinear Klein-Gordon equations in infinite homogeneous waveguides, R x M, with smooth small data, where M = (M, g) is a Zoll manifold, or a compact revolution hypersurface. The method is based on normal forms, eigenfunction expansion and the special distribution of eigenvalues of the Laplace-Beltrami on such manifolds. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:212 / 234
页数:23
相关论文
共 50 条