Separation of variables and exact solutions of generalized nonlinear Klein-Gordon equations

被引:0
|
作者
Qu, CZ [1 ]
He, WL
Dou, JH
机构
[1] NW Univ Xian, Dept Math, Xian 710069, Peoples R China
[2] NW Univ Xian, Inst Modern Phys, Xian 710069, Peoples R China
来源
PROGRESS OF THEORETICAL PHYSICS | 2001年 / 105卷 / 03期
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the generalized conditional symmetry approach is developed to study the separation of variables for generalized nonlinear Klein-Gordon equations. We derive a complete list of canonical forms for a generalized nonlinear Klein-Gordon equation and a system of generalized nonlinear Klein-Gordon equations that submit ti, separation of variables in some coordinates. As a result, some exact solutions to the Bullough-Dodd equation, Liouville equation, Sine-Gordon equation and Sinh-Gordon equation are obtained. A symmetry group interpretation of the known results concerning separation of variables with the scalar Klein-Gordon equation is also given.
引用
收藏
页码:379 / 398
页数:20
相关论文
共 50 条
  • [41] Scattering of solutions for critical and subcritical nonlinear Klein-Gordon equations in Hs
    Wang, BX
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 1999, 5 (04) : 753 - 763
  • [42] Strong instability of solitary waves for nonlinear Klein-Gordon equations and generalized Boussinesq equations
    Liu, Yue
    Ohta, Masahito
    Todorova, Grozdena
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2007, 24 (04): : 539 - 548
  • [43] SCATTERING OPERATOR FOR NONLINEAR KLEIN-GORDON EQUATIONS
    Hayashi, Nakao
    Naumkin, Pavel I.
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2009, 11 (05) : 771 - 781
  • [44] NONLINEAR KLEIN-GORDON EQUATIONS FOR THE MOTION OF THE STRING
    KOBAYASHI, K
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1984, 71 (02): : 424 - 426
  • [45] Nonlinear scattering for a system of nonlinear Klein-Gordon equations
    Hayashi, Nakao
    Naumkin, Pavel I.
    Wibowo, Ratno Bagus Edy
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (10)
  • [46] Exact solutions of a (2+1)-dimensional nonlinear Klein-Gordon equation
    Güngör, F
    [J]. PHYSICA SCRIPTA, 2000, 61 (04): : 385 - 390
  • [47] PRODUCT APPROXIMATION FOR NONLINEAR KLEIN-GORDON EQUATIONS
    TOURIGNY, Y
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 1990, 10 (03) : 449 - 462
  • [48] Exact multisoliton solutions of nonlinear Klein-Gordon equation in 1 + 2 dimensions
    Mohammad Mirzazadeh
    Mostafa Eslami
    [J]. The European Physical Journal Plus, 128
  • [49] New wave solutions, exact and numerical approximations to the nonlinear Klein-Gordon equation
    Partohaghighi, Mohammad
    Sulaiman, Tukur A.
    Yusuf, Abdullahi
    Inc, Mustafa
    Bayram, Mustafa
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2023, 37 (20):
  • [50] INTEGRAL SETS AND SEPARATION OF VARIABLES IN KLEIN-GORDON EQUATION
    SUKHOMLIN, NB
    SHAPOVALOV, VN
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1973, (11): : 122 - 125