Application of the gradient method to Hartree-Fock-Bogoliubov theory

被引:68
|
作者
Robledo, L. M. [1 ]
Bertsch, G. F. [2 ,3 ]
机构
[1] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain
[2] Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA
[3] Univ Washington, Dept Phys, Seattle, WA 98195 USA
来源
PHYSICAL REVIEW C | 2011年 / 84卷 / 01期
基金
美国国家科学基金会;
关键词
HARMONIC-OSCILLATOR BASIS; BOGOLYUBOV EQUATIONS; MEAN-FIELD;
D O I
10.1103/PhysRevC.84.014312
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
A computer code is presented for solving the equations of the Hartree-Fock-Bogoliubov (HFB) theory by the gradient method, motivated by the need for efficient and robust codes to calculate the configurations required by extensions of the HFB theory, such as the generator coordinate method. The code is organized with a separation between the parts that are specific to the details of the Hamiltonian and the parts that are generic to the gradient method. This permits total flexibility in choosing the symmetries to be imposed on the HFB solutions. The code solves for both even and odd particle-number ground states, with the choice determined by the input data stream. Application is made to the nuclei in the sd shell using the universal sd-shell interaction B (USDB) shell-model Hamiltonian.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] A NUMERICAL PERSPECTIVE ON HARTREE-FOCK-BOGOLIUBOV THEORY
    Lewin, Mathieu
    Paul, Severine
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (01): : 53 - 86
  • [2] Homogeneous Spaces in Hartree-Fock-Bogoliubov Theory
    Alvarado, Claudia D.
    Chiumiento, Eduardo
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (11)
  • [3] Application of the inverse Hamiltonian method to Hartree-Fock-Bogoliubov calculations
    Tanimura, Y.
    Hagino, K.
    Ring, P.
    PHYSICAL REVIEW C, 2013, 88 (01):
  • [4] AN EXTENSION OF THE CRANKED HARTREE-FOCK-BOGOLIUBOV THEORY
    HORIBATA, T
    LETTERE AL NUOVO CIMENTO, 1980, 28 (17): : 578 - 582
  • [5] ON THE SOLUTION OF THE HARTREE-FOCK-BOGOLIUBOV EQUATIONS BY THE CONJUGATE-GRADIENT METHOD
    EGIDO, JL
    LESSING, J
    MARTIN, V
    ROBLEDO, LM
    NUCLEAR PHYSICS A, 1995, 594 (01) : 70 - 86
  • [6] HARTREE-FOCK-BOGOLIUBOV THEORY WITHOUT QUASIPARTICLE VACUA
    ROSENSTEEL, G
    PHYSICAL REVIEW A, 1981, 23 (06): : 2794 - 2801
  • [7] Quasiparticle continuum and resonances in the Hartree-Fock-Bogoliubov theory
    Pei, J. C.
    Kruppa, A. T.
    Nazarewicz, W.
    PHYSICAL REVIEW C, 2011, 84 (02):
  • [8] Modified Hartree-Fock-Bogoliubov theory at finite temperature
    Dang, ND
    Arima, A
    PHYSICAL REVIEW C, 2003, 68 (01):
  • [9] Hartree-Fock-Bogoliubov theory of polarized Fermi systems
    Bertsch, George
    Dobaczewski, Jacek
    Nazarewicz, Witold
    Pei, Junchen
    PHYSICAL REVIEW A, 2009, 79 (04):
  • [10] Hartree-Fock-Bogoliubov theory of dipolar Fermi gases
    Zhao, Cheng
    Jiang, Lei
    Liu, Xunxu
    Liu, W. M.
    Zou, Xubo
    Pu, Han
    PHYSICAL REVIEW A, 2010, 81 (06):