Application of the gradient method to Hartree-Fock-Bogoliubov theory

被引:68
|
作者
Robledo, L. M. [1 ]
Bertsch, G. F. [2 ,3 ]
机构
[1] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain
[2] Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA
[3] Univ Washington, Dept Phys, Seattle, WA 98195 USA
来源
PHYSICAL REVIEW C | 2011年 / 84卷 / 01期
基金
美国国家科学基金会;
关键词
HARMONIC-OSCILLATOR BASIS; BOGOLYUBOV EQUATIONS; MEAN-FIELD;
D O I
10.1103/PhysRevC.84.014312
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
A computer code is presented for solving the equations of the Hartree-Fock-Bogoliubov (HFB) theory by the gradient method, motivated by the need for efficient and robust codes to calculate the configurations required by extensions of the HFB theory, such as the generator coordinate method. The code is organized with a separation between the parts that are specific to the details of the Hamiltonian and the parts that are generic to the gradient method. This permits total flexibility in choosing the symmetries to be imposed on the HFB solutions. The code solves for both even and odd particle-number ground states, with the choice determined by the input data stream. Application is made to the nuclei in the sd shell using the universal sd-shell interaction B (USDB) shell-model Hamiltonian.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Gapless Hartree-Fock-Bogoliubov approximation for bose gases
    Yukalov, V. I.
    Kleinert, H.
    PHYSICAL REVIEW A, 2006, 73 (06):
  • [42] SOLUTION OF THE HARTREE-FOCK-BOGOLIUBOV PROBLEM IN THE CANONICAL REPRESENTATION
    MUHLHANS, K
    NEERGARD, K
    MOSEL, U
    NUCLEAR PHYSICS A, 1984, 420 (02) : 204 - 220
  • [43] CHARACTER OF HARTREE-FOCK-BOGOLIUBOV SOLUTIONS IN A ROTATING FRAME
    BANERJEE, B
    RING, P
    MANG, HJ
    NUCLEAR PHYSICS A, 1974, A221 (03) : 564 - 572
  • [44] Symmetry-projected Hartree-Fock-Bogoliubov equations
    Sheikh, JA
    Ring, P
    NUCLEAR PHYSICS A, 2000, 665 (1-2) : 71 - 91
  • [45] Implicit ladder summation in the Hartree-Fock-Bogoliubov approach
    Pricoupenko, Ludovic
    PHYSICAL REVIEW A, 2011, 84 (05):
  • [46] Pairing vibrations study with the time-dependent Hartree-Fock-Bogoliubov theory
    Avez, B.
    Simenel, C.
    Chomaz, Ph.
    PHYSICAL REVIEW C, 2008, 78 (04):
  • [47] Relativistic Hartree-Fock-Bogoliubov model for deformed nuclei
    Ebran, J. -P.
    Khan, E.
    Arteaga, D. Pena
    Vretenar, D.
    PHYSICAL REVIEW C, 2011, 83 (06):
  • [48] Hartree-Fock-Bogoliubov approximation to relativistic nuclear matter
    Guimaraes, FB
    Carlson, BV
    Frederico, T
    PHYSICAL REVIEW C, 1996, 54 (05): : 2385 - 2398
  • [49] Hartree-Fock-Bogoliubov calculations with correlated realistic interactions
    Hergert, H.
    Roth, R.
    Zapp, A.
    PROGRESS IN PARTICLE AND NUCLEAR PHYSICS VOL 59, NO 1, 2007, 59 (01): : 470 - 472
  • [50] Sign of the overlap of Hartree-Fock-Bogoliubov wave functions
    Robledo, L. M.
    PHYSICAL REVIEW C, 2009, 79 (02):