Application of the gradient method to Hartree-Fock-Bogoliubov theory

被引:68
|
作者
Robledo, L. M. [1 ]
Bertsch, G. F. [2 ,3 ]
机构
[1] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain
[2] Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA
[3] Univ Washington, Dept Phys, Seattle, WA 98195 USA
来源
PHYSICAL REVIEW C | 2011年 / 84卷 / 01期
基金
美国国家科学基金会;
关键词
HARMONIC-OSCILLATOR BASIS; BOGOLYUBOV EQUATIONS; MEAN-FIELD;
D O I
10.1103/PhysRevC.84.014312
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
A computer code is presented for solving the equations of the Hartree-Fock-Bogoliubov (HFB) theory by the gradient method, motivated by the need for efficient and robust codes to calculate the configurations required by extensions of the HFB theory, such as the generator coordinate method. The code is organized with a separation between the parts that are specific to the details of the Hamiltonian and the parts that are generic to the gradient method. This permits total flexibility in choosing the symmetries to be imposed on the HFB solutions. The code solves for both even and odd particle-number ground states, with the choice determined by the input data stream. Application is made to the nuclei in the sd shell using the universal sd-shell interaction B (USDB) shell-model Hamiltonian.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Cluster decay in osmium isotopes using Hartree-Fock-Bogoliubov theory
    Ashok, Nithu
    Joseph, Deepthy Maria
    Joseph, Antony
    MODERN PHYSICS LETTERS A, 2016, 31 (07)
  • [22] Description of carbon isotopes within relativistic Hartree-Fock-Bogoliubov theory
    Lu, Xiao Li
    Sun, Bao Yuan
    Long, Wen Hui
    PHYSICAL REVIEW C, 2013, 87 (03):
  • [23] AN INVESTIGATION ON SHAPE EVOLUTION OF Ti ISOTOPES WITH HARTREE-FOCK-BOGOLIUBOV THEORY
    Bayram, Tuncay
    MODERN PHYSICS LETTERS A, 2012, 27 (28)
  • [24] MINIMIZERS FOR THE HARTREE-FOCK-BOGOLIUBOV THEORY OF NEUTRON STARS AND WHITE DWARFS
    Lenzmann, Enno
    Lewin, Mathieu
    DUKE MATHEMATICAL JOURNAL, 2010, 152 (02) : 257 - 315
  • [25] Hartree-Fock-Bogoliubov theory of a charged Bose gas at finite temperature
    Davoudi, B
    Minguzzi, A
    Tosi, MP
    PHYSICAL REVIEW B, 2002, 65 (14) : 1 - 7
  • [26] SUPERHEAVY MAGIC SHELLS WITHIN RELATIVISTIC HARTREE-FOCK-BOGOLIUBOV THEORY
    Li, Jia Jie
    Long, Wen Hui
    NUCLEAR STRUCTURE IN CHINA 2012, 2013, : 130 - 133
  • [27] Hartree-Fock-Bogoliubov theory of nuclei with proton-neutron mixing
    Perlinska, E
    Rohozinski, SG
    Dobaczewski, J
    Nazarewicz, W
    HIRSCHEGG '96: EXTREMES OF NUCLEAR STRUCTURE, 1996, : 228 - 231
  • [28] AN APPROXIMATE FIXED-CONFIGURATION METHOD FOR COLLECTIVE ROTATIONAL BANDS IN THE HARTREE-FOCK-BOGOLIUBOV THEORY
    TERASAKI, J
    SAKATA, F
    IWASAWA, K
    PHYSICS LETTERS B, 1995, 348 (3-4) : 320 - 324
  • [29] Pair correlations and the time-dependent Hartree-Fock-Bogoliubov method in the theory of nuclear structure
    V. V. Voronov
    R. V. Jolos
    N. N. Arsenyev
    A. P. Severyukhin
    Physics of Particles and Nuclei, 2010, 41 : 874 - 879
  • [30] Canonical states in continuum Skyrme Hartree-Fock-Bogoliubov theory with Green's function method
    Qu, Xiao Ying
    Zhang, Ying
    PHYSICAL REVIEW C, 2019, 99 (01)