Homogeneous Spaces in Hartree-Fock-Bogoliubov Theory

被引:1
|
作者
Alvarado, Claudia D. [1 ,2 ]
Chiumiento, Eduardo [1 ,2 ]
机构
[1] FCE UNLP, Ctr Matemat La Plata, Dept Matemat, Calles 50 & 115, RA-1900 La Plata, Argentina
[2] Consejo Nacl Invest Cient & Tecn, Inst Argentino Matemat Alberto P Calderon, Saavedra 15 3er Piso, RA-1083 Buenos Aires, Argentina
关键词
Generalized one-particle density matrix; Bogoliubov transformation; Homogeneous space; Embedded submanifold; Invariant symplectic form; K & auml; hler homogeneous space; LIE-POISSON SPACES; HERMITIAN-MANIFOLDS; CLASSIFICATION;
D O I
10.1007/s12220-024-01776-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the action of Bogoliubov transformations on admissible generalized one-particle density matrices arising in Hartree-Fock-Bogoliubov theory. We show that the orbits of this action are reductive homogeneous spaces, and we give several equivalences that characterize when they are embedded submanifolds of natural ambient spaces. We use Lie theoretic arguments to prove that these orbits admit an invariant symplectic form. If, in addition, the operators in the orbits have finite spectrum, then we obtain that the orbits are actually K & auml;hler homogeneous spaces.
引用
收藏
页数:48
相关论文
共 50 条
  • [1] A NUMERICAL PERSPECTIVE ON HARTREE-FOCK-BOGOLIUBOV THEORY
    Lewin, Mathieu
    Paul, Severine
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (01): : 53 - 86
  • [2] AN EXTENSION OF THE CRANKED HARTREE-FOCK-BOGOLIUBOV THEORY
    HORIBATA, T
    LETTERE AL NUOVO CIMENTO, 1980, 28 (17): : 578 - 582
  • [3] HARTREE-FOCK-BOGOLIUBOV THEORY WITHOUT QUASIPARTICLE VACUA
    ROSENSTEEL, G
    PHYSICAL REVIEW A, 1981, 23 (06): : 2794 - 2801
  • [4] Application of the gradient method to Hartree-Fock-Bogoliubov theory
    Robledo, L. M.
    Bertsch, G. F.
    PHYSICAL REVIEW C, 2011, 84 (01):
  • [5] Quasiparticle continuum and resonances in the Hartree-Fock-Bogoliubov theory
    Pei, J. C.
    Kruppa, A. T.
    Nazarewicz, W.
    PHYSICAL REVIEW C, 2011, 84 (02):
  • [6] Modified Hartree-Fock-Bogoliubov theory at finite temperature
    Dang, ND
    Arima, A
    PHYSICAL REVIEW C, 2003, 68 (01):
  • [7] Hartree-Fock-Bogoliubov theory of polarized Fermi systems
    Bertsch, George
    Dobaczewski, Jacek
    Nazarewicz, Witold
    Pei, Junchen
    PHYSICAL REVIEW A, 2009, 79 (04):
  • [8] Hartree-Fock-Bogoliubov theory of dipolar Fermi gases
    Zhao, Cheng
    Jiang, Lei
    Liu, Xunxu
    Liu, W. M.
    Zou, Xubo
    Pu, Han
    PHYSICAL REVIEW A, 2010, 81 (06):
  • [9] A Hartree-Fock-Bogoliubov mass formula
    Samyn, M
    Goriely, S
    Heenen, PH
    Pearson, JM
    Tondeur, F
    NUCLEAR PHYSICS A, 2002, 700 (1-2) : 142 - 156
  • [10] Extended Hartree-Fock-Bogoliubov theory for degenerate Bose systems
    Tommasini, P
    de Passos, EJV
    Pires, MOC
    Piza, AFRD
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (21) : 3165 - 3181