Homogeneous Spaces in Hartree-Fock-Bogoliubov Theory

被引:1
|
作者
Alvarado, Claudia D. [1 ,2 ]
Chiumiento, Eduardo [1 ,2 ]
机构
[1] FCE UNLP, Ctr Matemat La Plata, Dept Matemat, Calles 50 & 115, RA-1900 La Plata, Argentina
[2] Consejo Nacl Invest Cient & Tecn, Inst Argentino Matemat Alberto P Calderon, Saavedra 15 3er Piso, RA-1083 Buenos Aires, Argentina
关键词
Generalized one-particle density matrix; Bogoliubov transformation; Homogeneous space; Embedded submanifold; Invariant symplectic form; K & auml; hler homogeneous space; LIE-POISSON SPACES; HERMITIAN-MANIFOLDS; CLASSIFICATION;
D O I
10.1007/s12220-024-01776-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the action of Bogoliubov transformations on admissible generalized one-particle density matrices arising in Hartree-Fock-Bogoliubov theory. We show that the orbits of this action are reductive homogeneous spaces, and we give several equivalences that characterize when they are embedded submanifolds of natural ambient spaces. We use Lie theoretic arguments to prove that these orbits admit an invariant symplectic form. If, in addition, the operators in the orbits have finite spectrum, then we obtain that the orbits are actually K & auml;hler homogeneous spaces.
引用
收藏
页数:48
相关论文
共 50 条
  • [31] Formulation of unrestricted and restricted Hartree-Fock-Bogoliubov equations
    Yamaki, D
    Ohsaku, T
    Nagao, H
    Yamaguchi, K
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2004, 96 (01) : 10 - 16
  • [32] Gapless Hartree-Fock-Bogoliubov approximation for bose gases
    Yukalov, V. I.
    Kleinert, H.
    PHYSICAL REVIEW A, 2006, 73 (06):
  • [33] SOLUTION OF THE HARTREE-FOCK-BOGOLIUBOV PROBLEM IN THE CANONICAL REPRESENTATION
    MUHLHANS, K
    NEERGARD, K
    MOSEL, U
    NUCLEAR PHYSICS A, 1984, 420 (02) : 204 - 220
  • [34] CHARACTER OF HARTREE-FOCK-BOGOLIUBOV SOLUTIONS IN A ROTATING FRAME
    BANERJEE, B
    RING, P
    MANG, HJ
    NUCLEAR PHYSICS A, 1974, A221 (03) : 564 - 572
  • [35] Symmetry-projected Hartree-Fock-Bogoliubov equations
    Sheikh, JA
    Ring, P
    NUCLEAR PHYSICS A, 2000, 665 (1-2) : 71 - 91
  • [36] Implicit ladder summation in the Hartree-Fock-Bogoliubov approach
    Pricoupenko, Ludovic
    PHYSICAL REVIEW A, 2011, 84 (05):
  • [37] Pairing vibrations study with the time-dependent Hartree-Fock-Bogoliubov theory
    Avez, B.
    Simenel, C.
    Chomaz, Ph.
    PHYSICAL REVIEW C, 2008, 78 (04):
  • [38] Relativistic Hartree-Fock-Bogoliubov model for deformed nuclei
    Ebran, J. -P.
    Khan, E.
    Arteaga, D. Pena
    Vretenar, D.
    PHYSICAL REVIEW C, 2011, 83 (06):
  • [39] Hartree-Fock-Bogoliubov approximation to relativistic nuclear matter
    Guimaraes, FB
    Carlson, BV
    Frederico, T
    PHYSICAL REVIEW C, 1996, 54 (05): : 2385 - 2398
  • [40] Hartree-Fock-Bogoliubov calculations with correlated realistic interactions
    Hergert, H.
    Roth, R.
    Zapp, A.
    PROGRESS IN PARTICLE AND NUCLEAR PHYSICS VOL 59, NO 1, 2007, 59 (01): : 470 - 472