Geodesic completeness for type A surfaces

被引:6
|
作者
D'Ascanio, D. [1 ]
Gilkey, P. [2 ]
Pisani, P. [1 ,3 ]
机构
[1] Univ Nacl La Plata, CONICET, Inst Fis La Plata, CC 67, RA-1900 La Plata, Buenos Aires, Argentina
[2] Univ Oregon, Dept Math, Eugene, OR 97403 USA
[3] Univ Nacl La Plata, Fac Ciencias Exactas, Dept Fis, CC 67, RA-1900 La Plata, Buenos Aires, Argentina
关键词
Ricci tensor; Homogeneous affine surface; Geodesic completeness; HOMOGENEOUS AFFINE CONNECTIONS; 2-DIMENSIONAL MANIFOLDS; COMPACT SURFACES; CLASSIFICATION;
D O I
10.1016/j.difgeo.2016.12.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Type A surfaces are the locally homogeneous affine surfaces which can be locally described by constant Christoffel symbols. We address the issue of the geodesic completeness of these surfaces: we show that some models for Type A surfaces are geodesically complete, that some others admit an incomplete geodesic but model geodesically complete surfaces, and that there are also others which do not model any geodesically complete surface. Our main result provides a way of determining whether a given set of constant Christoffel symbols can model a geodesically complete surface. (c) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:31 / 43
页数:13
相关论文
共 50 条
  • [31] Geodesic Spanners on Polyhedral Surfaces
    Kapoor, Sanjiv
    Li, Xiang-Yang
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2009, 5878 : 213 - 223
  • [32] Spaces of Geodesic Triangulations of Surfaces
    Luo, Yanwen
    DISCRETE & COMPUTATIONAL GEOMETRY, 2022, 68 (03) : 709 - 727
  • [33] Geodesic lines on convex surfaces
    Liberman, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES DE L URSS, 1941, 32 : 310 - 313
  • [34] Geodesic bifurcation on smooth surfaces
    Hannes Thielhelm
    Alexander Vais
    Franz-Erich Wolter
    The Visual Computer, 2015, 31 : 187 - 204
  • [35] Compressing totally geodesic surfaces
    Leininger, CJ
    TOPOLOGY AND ITS APPLICATIONS, 2002, 118 (03) : 309 - 328
  • [36] Integrable Geodesic Flows on Surfaces
    Misha Bialy
    Geometric and Functional Analysis, 2010, 20 : 357 - 367
  • [37] CONGRUENCES OF TOTALLY GEODESIC SURFACES
    PLEBANSKI, JF
    ROZGA, K
    CLASSICAL AND QUANTUM GRAVITY, 1989, 6 (03) : 349 - 368
  • [38] Geodesic lines of convex surfaces
    Poincare, Henri
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1905, 6 (03) : 237 - 274
  • [39] Geodesic bifurcation on smooth surfaces
    Thielhelm, Hannes
    Vais, Alexander
    Wolter, Franz-Erich
    VISUAL COMPUTER, 2015, 31 (02): : 187 - 204
  • [40] Totally geodesic surfaces and homology
    Deblois, Jason
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2006, 6 : 1413 - 1428