机构:
Univ Nacl La Plata, CONICET, Inst Fis La Plata, CC 67, RA-1900 La Plata, Buenos Aires, ArgentinaUniv Nacl La Plata, CONICET, Inst Fis La Plata, CC 67, RA-1900 La Plata, Buenos Aires, Argentina
D'Ascanio, D.
[1
]
Gilkey, P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Oregon, Dept Math, Eugene, OR 97403 USAUniv Nacl La Plata, CONICET, Inst Fis La Plata, CC 67, RA-1900 La Plata, Buenos Aires, Argentina
Gilkey, P.
[2
]
Pisani, P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl La Plata, CONICET, Inst Fis La Plata, CC 67, RA-1900 La Plata, Buenos Aires, Argentina
Univ Nacl La Plata, Fac Ciencias Exactas, Dept Fis, CC 67, RA-1900 La Plata, Buenos Aires, ArgentinaUniv Nacl La Plata, CONICET, Inst Fis La Plata, CC 67, RA-1900 La Plata, Buenos Aires, Argentina
Pisani, P.
[1
,3
]
机构:
[1] Univ Nacl La Plata, CONICET, Inst Fis La Plata, CC 67, RA-1900 La Plata, Buenos Aires, Argentina
[2] Univ Oregon, Dept Math, Eugene, OR 97403 USA
[3] Univ Nacl La Plata, Fac Ciencias Exactas, Dept Fis, CC 67, RA-1900 La Plata, Buenos Aires, Argentina
Type A surfaces are the locally homogeneous affine surfaces which can be locally described by constant Christoffel symbols. We address the issue of the geodesic completeness of these surfaces: we show that some models for Type A surfaces are geodesically complete, that some others admit an incomplete geodesic but model geodesically complete surfaces, and that there are also others which do not model any geodesically complete surface. Our main result provides a way of determining whether a given set of constant Christoffel symbols can model a geodesically complete surface. (c) 2016 Elsevier B.V. All rights reserved.