Geodesic completeness for type A surfaces

被引:6
|
作者
D'Ascanio, D. [1 ]
Gilkey, P. [2 ]
Pisani, P. [1 ,3 ]
机构
[1] Univ Nacl La Plata, CONICET, Inst Fis La Plata, CC 67, RA-1900 La Plata, Buenos Aires, Argentina
[2] Univ Oregon, Dept Math, Eugene, OR 97403 USA
[3] Univ Nacl La Plata, Fac Ciencias Exactas, Dept Fis, CC 67, RA-1900 La Plata, Buenos Aires, Argentina
关键词
Ricci tensor; Homogeneous affine surface; Geodesic completeness; HOMOGENEOUS AFFINE CONNECTIONS; 2-DIMENSIONAL MANIFOLDS; COMPACT SURFACES; CLASSIFICATION;
D O I
10.1016/j.difgeo.2016.12.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Type A surfaces are the locally homogeneous affine surfaces which can be locally described by constant Christoffel symbols. We address the issue of the geodesic completeness of these surfaces: we show that some models for Type A surfaces are geodesically complete, that some others admit an incomplete geodesic but model geodesically complete surfaces, and that there are also others which do not model any geodesically complete surface. Our main result provides a way of determining whether a given set of constant Christoffel symbols can model a geodesically complete surface. (c) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:31 / 43
页数:13
相关论文
共 50 条
  • [21] Newtonian potential and geodesic completeness in infinite derivative gravity
    Edholm, James
    Conroy, Aindriu
    PHYSICAL REVIEW D, 2017, 96 (04)
  • [22] On geodesic completeness for Riemannian metrics on smooth probability densities
    Martin Bauer
    Sarang Joshi
    Klas Modin
    Calculus of Variations and Partial Differential Equations, 2017, 56
  • [23] On the completeness of the asymptotic length spectrum Teichmuller space of surfaces of infinite type
    Jimenez-Lopez, Francisco G.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2019, 25 (01): : 131 - 144
  • [24] Surfaces of section for geodesic flows of closed surfaces
    Contreras, Gonzalo
    Knieper, Gerhard
    Mazzucchelli, Marco
    Schulz, Benjamin h.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2024,
  • [25] GEODESIC MAPS OF RULED SURFACES
    BRAUNER, H
    MONATSHEFTE FUR MATHEMATIK, 1985, 99 (02): : 85 - 103
  • [26] Spaces of Geodesic Triangulations of Surfaces
    Yanwen Luo
    Discrete & Computational Geometry, 2022, 68 : 709 - 727
  • [27] Geodesic curve computations on surfaces
    Kumar, GVVR
    Srinivasan, P
    Holla, VD
    Shastry, KG
    Prakash, BG
    COMPUTER AIDED GEOMETRIC DESIGN, 2003, 20 (02) : 119 - 133
  • [28] INTEGRABLE GEODESIC FLOWS ON SURFACES
    Bialy, Misha
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2010, 20 (02) : 357 - 367
  • [29] GEODESIC MAPPING OF MINIMAL SURFACES
    HELFENSTEIN, H
    WYMAN, M
    MATHEMATISCHE ANNALEN, 1956, 132 (04) : 310 - 327
  • [30] Geodesic matching of triangulated surfaces
    Ben Hamza, A.
    Krim, Hamid
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (08) : 2249 - 2258