Predicting Patient Mortality: Using Machine Learning to Identify At-Risk Patients and Improve Outcomes

被引:0
|
作者
Barton, C.
Mohamadlou, H.
Lynn-Palevsky, A.
Fletcher, G.
Shieh, L.
Stark, P.
Chettipally, U.
Shimabukuro, D. W.
Feldman, M.
Das, R.
机构
基金
美国国家卫生研究院;
关键词
D O I
暂无
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
A4299
引用
收藏
页数:2
相关论文
共 50 条
  • [21] Predicting at-Risk Students at Different Percentages of Course Length for Early Intervention Using Machine Learning Models
    Adnan, Muhammad
    Habib, Asad
    Ashraf, Jawad
    Mussadiq, Shafaq
    Raza, Arsalan Ali
    Abid, Muhammad
    Bashir, Maryam
    Khan, Sana Ullah
    IEEE ACCESS, 2021, 9 : 7519 - 7539
  • [22] Using Machine Learning and Feature Importance to Identify Risk Factors for Mortality in Pediatric Heart Surgery
    Kapsner, Lorenz A.
    Feisst, Manuel
    Purbojo, Ariawan
    Prokosch, Hans-Ulrich
    Ganslandt, Thomas
    Dittrich, Sven
    Mang, Jonathan M.
    Waellisch, Wolfgang
    DIAGNOSTICS, 2024, 14 (22)
  • [23] Predicting At-Risk Students Using the Deep Learning BLSTM Approach
    Souai, Wiem
    Mihoub, Alaeddine
    Tarhouni, Mounira
    Zidi, Salah
    Krichen, Moez
    Mahfoudhi, Sami
    2022 2ND INTERNATIONAL CONFERENCE OF SMART SYSTEMS AND EMERGING TECHNOLOGIES (SMARTTECH 2022), 2022, : 32 - 37
  • [24] Predicting at-Risk Students at Different Percentages of Course Length for Early Intervention Using Machine Learning Models
    Adnan, Muhammad
    Habib, Asad
    Ashraf, Jawad
    Mussadiq, Shafaq
    Raza, Arsalan Ali
    Abid, Muhammad
    Bashir, Maryam
    Khan, Sana Ullah
    IEEE Access, 2021, 9 : 7519 - 7539
  • [25] Using Machine Learning to Identify At-risk Students in an Introductory Programming Course at a Two-year Public College
    Cooper, Cameron
    ADVANCES IN ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING, 2022, 2 (03): : 407 - 421
  • [26] Using machine learning to identify predictors of imminent drinking and create tailored messages for at-risk drinkers experiencing homelessness
    Walters, Scott T.
    Businelle, Michael S.
    Suchting, Robert
    Li, Xiaoyin
    Hebert, Emily T.
    Mun, Eun-Young
    JOURNAL OF SUBSTANCE ABUSE TREATMENT, 2021, 127
  • [27] Risk factors and machine learning model for predicting hospitalization outcomes in geriatric patients with dementia
    Wang, Xin
    Ezeana, Chika F.
    Wang, Lin
    Puppala, Mamta
    Huang, Yan-Siang
    He, Yunjie
    Yu, Xiaohui
    Yin, Zheng
    Zhao, Hong
    Lai, Eugene C.
    Wong, Stephen T. C.
    ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS, 2022, 8 (01)
  • [28] Learning Analytics to Identify Students at-risk in MOOCs
    Srilekshmi, M.
    Sindhumol, S.
    Chatterjee, Shiffon
    Bijlani, Kamal
    2016 IEEE 8TH INTERNATIONAL CONFERENCE ON TECHNOLOGY FOR EDUCATION (T4E 2016), 2016, : 194 - 199
  • [29] Predicting outcomes of pelvic exenteration using machine learning
    Dudurych, I.
    Kelly, M. E.
    Aalbers, A. G. J.
    Aziz, N. Abdul
    Abecasis, N.
    Abraham-Nordling, M.
    Akiyoshi, T.
    Alberda, W.
    Albert, M.
    Andric, M.
    Angenete, E.
    Antoniou, A.
    Auer, R.
    Austin, K. K.
    Aziz, O.
    Baker, R. P.
    Bali, M.
    Baseckas, G.
    Bebington, B.
    Bedford, M.
    Bednarski, B. K.
    Beets, G. L.
    Berg, P. L.
    Beynon, J.
    Biondo, S.
    Boyle, K.
    Bordeianou, L.
    Bremers, A. B.
    Brunner, M.
    Buchwald, P.
    Bui, A.
    Burgess, A.
    Burger, J. W. A.
    Burling, D.
    Burns, E.
    Campain, N.
    Carvalhal, S.
    Castro, L.
    Caycedo-Marulanda, A.
    Chan, K. K. L.
    Chang, G. J.
    Chew, M. H.
    Chok, A. K.
    Chong, P.
    Christensen, H. K.
    Clouston, H.
    Codd, M.
    Collins, D.
    Colquhoun, A. J.
    Corr, A.
    COLORECTAL DISEASE, 2020, 22 (12) : 1933 - 1940
  • [30] Predicting Hearing Aid Outcomes Using Machine Learning
    Roger, Pauline
    Lespargot, Thomas
    Boiteux, Catherine
    Bailly-Masson, Eric
    Auberger, Fabien
    Mouysset, Sandrine
    Fraysse, Bernard
    AUDIOLOGY AND NEUROTOLOGY, 2025,