Predicting Patient Mortality: Using Machine Learning to Identify At-Risk Patients and Improve Outcomes

被引:0
|
作者
Barton, C.
Mohamadlou, H.
Lynn-Palevsky, A.
Fletcher, G.
Shieh, L.
Stark, P.
Chettipally, U.
Shimabukuro, D. W.
Feldman, M.
Das, R.
机构
基金
美国国家卫生研究院;
关键词
D O I
暂无
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
A4299
引用
收藏
页数:2
相关论文
共 50 条
  • [41] Predicting Decompensation Risk in Intensive Care Unit Patients Using Machine Learning
    Aikodon, Nosa
    Ortega-Martorell, Sandra
    Olier, Ivan
    ALGORITHMS, 2024, 17 (01)
  • [42] Predicting postoperative pulmonary infection risk in patients with diabetes using machine learning
    Zhao, Chunxiu
    Xiang, Bingbing
    Zhang, Jie
    Yang, Pingliang
    Liu, Qiaoli
    Wang, Shun
    FRONTIERS IN PHYSIOLOGY, 2024, 15
  • [43] Predicting venous thromboembolism (VTE) risk in cancer patients using machine learning
    Townsley, Samir Khan
    Basu, Debraj
    Vora, Jayneel
    Wun, Ted
    Chuah, Chen-Nee
    Shankar, Prabhu R. V.
    HEALTH CARE SCIENCE, 2023, 2 (04): : 205 - 222
  • [44] Predicting the risk of pulmonary embolism in patients with tuberculosis using machine learning algorithms
    Kong, Haobo
    Li, Yong
    Shen, Ya
    Pan, Jingjing
    Liang, Min
    Geng, Zhi
    Zhang, Yanbei
    EUROPEAN JOURNAL OF MEDICAL RESEARCH, 2024, 29 (01)
  • [45] Predicting the Risk of Patients from Corona Virus in India Using Machine Learning
    Jha, Ayush
    Venkatesh, M.
    Agarwal, Tanushree
    Bilgaiyan, Saurabh
    Advances in Intelligent Systems and Computing, 2021, 1311 AISC : 351 - 364
  • [46] Predicting Patients at Risk for Leaving Without Being Seen Using Machine Learning
    Casey, P.
    Zolfaghar, K.
    Eckert, C.
    Waters, L.
    Sonntag, H.
    McKelvey, T., Jr.
    Mark, N. M.
    ANNALS OF EMERGENCY MEDICINE, 2018, 72 (04) : S5 - S6
  • [47] Predicting graft and patient outcomes following kidney transplantation using interpretable machine learning models
    Salaun, Achille
    Knight, Simon
    Wingfield, Laura
    Zhu, Tingting
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [48] Predicting at-risk university students based on their e-book reading behaviours by using machine learning classifiers
    Chen, Cheng-Huan
    Yang, Stephen J. H.
    Weng, Jian-Xuan
    Ogata, Hiroaki
    Su, Chien-Yuan
    AUSTRALASIAN JOURNAL OF EDUCATIONAL TECHNOLOGY, 2021, 37 (04) : 130 - 144
  • [49] Predicting future amyloid biomarkers in dementia patients with machine learning to improve clinical trial patient selection
    Reith, Fabian H.
    Mormino, Elizabeth C.
    Zaharchuk, Greg
    ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS, 2021, 7 (01)
  • [50] Using Machine Learning to Identify Patients at Risk of Acquiring HIV in an Urban Health System
    Nethi, Arun Kumar
    Karam, Albert George
    Alvarez, Kristin S.
    Luque, Amneris Esther
    Nijhawan, Ank E.
    Adhikari, Emily
    King, Helen Lynne
    JAIDS-JOURNAL OF ACQUIRED IMMUNE DEFICIENCY SYNDROMES, 2024, 97 (01) : 40 - 47