Benchmarking ensemble docking methods in D3R Grand Challenge 4

被引:0
|
作者
Gan, Jessie Low [1 ,2 ]
Kumar, Dhruv [3 ,4 ]
Chen, Cynthia [2 ,5 ]
Taylor, Bryn C. [6 ,7 ]
Jagger, Benjamin R. [6 ,8 ]
Amaro, Rommie E. [6 ]
Lee, Christopher T. [9 ]
机构
[1] San Diego Jewish Acad, San Diego, CA 92130 USA
[2] CALTECH, Pasadena, CA 91125 USA
[3] Rancho Bernardo High Sch, San Diego, CA 92128 USA
[4] Univ Calif Berkeley, Berkeley, CA 94720 USA
[5] Canyon Crest Acad, San Diego, CA 92130 USA
[6] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
[7] Janssen Res & Dev, Discovery Sci, San Diego, CA 92121 USA
[8] Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, San Francisco, CA 94158 USA
[9] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
Computational biophysics; Ensemble docking; Molecular dynamics; Drug discovery; Restrained docking; PROTEIN-LIGAND POSES; MOLECULAR-DYNAMICS; EFFICIENT GENERATION; RECEPTOR FLEXIBILITY; AFFINITY RANKINGS; BLIND PREDICTION; ACCURATE DOCKING; DRUG DISCOVERY; ATOMIC CHARGES; AM1-BCC MODEL;
D O I
10.1007/s10822-021-00433-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The discovery of new drugs is a time consuming and expensive process. Methods such as virtual screening, which can filter out ineffective compounds from drug libraries prior to expensive experimental study, have become popular research topics. As the computational drug discovery community has grown, in order to benchmark the various advances in methodology, organizations such as the Drug Design Data Resource have begun hosting blinded grand challenges seeking to identify the best methods for ligand pose-prediction, ligand affinity ranking, and free energy calculations. Such open challenges offer a unique opportunity for researchers to partner with junior students (e.g., high school and undergraduate) to validate basic yet fundamental hypotheses considered to be uninteresting to domain experts. Here, we, a group of high school-aged students and their mentors, present the results of our participation in Grand Challenge 4 where we predicted ligand affinity rankings for the Cathepsin S protease, an important protein target for autoimmune diseases. To investigate the effect of incorporating receptor dynamics on ligand affinity rankings, we employed the Relaxed Complex Scheme, a molecular docking method paired with molecular dynamics-generated receptor conformations. We found that Cathepsin S is a difficult target for molecular docking and we explore some advanced methods such as distance-restrained docking to try to improve the correlation with experiments. This project has exemplified the capabilities of high school students when supported with a rigorous curriculum, and demonstrates the value of community-driven competitions for beginners in computational drug discovery.
引用
收藏
页码:87 / 99
页数:13
相关论文
共 50 条
  • [41] Protein-ligand pose and affinity prediction: Lessons from D3R Grand Challenge 3
    Koukos, Panagiotis I.
    Xue, Li C.
    Bonvin, Alexandre M. J. J.
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2019, 33 (01) : 83 - 91
  • [42] D3R Grand Challenge 4: prospective pose prediction of BACE1 ligands with AutoDock-GPU
    Diogo Santos-Martins
    Jerome Eberhardt
    Giulia Bianco
    Leonardo Solis-Vasquez
    Francesca Alessandra Ambrosio
    Andreas Koch
    Stefano Forli
    [J]. Journal of Computer-Aided Molecular Design, 2019, 33 : 1071 - 1081
  • [43] D3R Grand Challenge 3: blind prediction of protein-ligand poses and affinity rankings
    Gaieb, Zied
    Parks, Conor D.
    Chiu, Michael
    Yang, Huanwang
    Shao, Chenghua
    Walters, W. Patrick
    Lambert, Millard H.
    Nevins, Neysa
    Bembenek, Scott D.
    Ameriks, Michael K.
    Mirzadegan, Tara
    Burley, Stephen K.
    Amaro, Rommie E.
    Gilson, Michael K.
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2019, 33 (01) : 1 - 18
  • [44] D3R Grand Challenge 4: prospective pose prediction of BACE1 ligands with AutoDock-GPU
    Santos-Martins, Diogo
    Eberhardt, Jerome
    Bianco, Giulia
    Solis-Vasquez, Leonardo
    Ambrosio, Francesca Alessandra
    Koch, Andreas
    Forli, Stefano
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2019, 33 (12) : 1071 - 1081
  • [45] D3R grand challenge 2015: Evaluation of protein-ligand pose and affinity predictions
    Gathiaka, Symon
    Liu, Shuai
    Chiu, Michael
    Yang, Huanwang
    Stuckey, Jeanne A.
    Kang, You Na
    Delproposto, Jim
    Kubish, Ginger
    Dunbar, James B., Jr.
    Carlson, Heather A.
    Burley, Stephen K.
    Walters, W. Patrick
    Amaro, Rommie E.
    Feher, Victoria A.
    Gilson, Michael K.
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2016, 30 (09) : 651 - 668
  • [46] The role of human in the loop: lessons from D3R challenge 4
    Stroganov, Oleg V.
    Novikov, Fedor N.
    Medvedev, Michael G.
    Dmitrienko, Artem O.
    Gerasimov, Igor
    Svitanko, Igor V.
    Chilov, Ghermes G.
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2020, 34 (02) : 121 - 130
  • [47] The role of human in the loop: lessons from D3R challenge 4
    Oleg V. Stroganov
    Fedor N. Novikov
    Michael G. Medvedev
    Artem O. Dmitrienko
    Igor Gerasimov
    Igor V. Svitanko
    Ghermes G. Chilov
    [J]. Journal of Computer-Aided Molecular Design, 2020, 34 : 121 - 130
  • [48] Prospective evaluation of shape similarity based pose prediction method in D3R Grand Challenge 2015
    Kumar, Ashutosh
    Zhang, Kam Y. J.
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2016, 30 (09) : 685 - 693
  • [49] Prospective evaluation of shape similarity based pose prediction method in D3R Grand Challenge 2015
    Ashutosh Kumar
    Kam Y. J. Zhang
    [J]. Journal of Computer-Aided Molecular Design, 2016, 30 : 685 - 693
  • [50] Blinded prediction of protein–ligand binding affinity using Amber thermodynamic integration for the 2018 D3R grand challenge 4
    Junjie Zou
    Chuan Tian
    Carlos Simmerling
    [J]. Journal of Computer-Aided Molecular Design, 2019, 33 : 1021 - 1029