ROBUST ANOMALY DETECTION IN HYPERSPECTRAL IMAGING

被引:8
|
作者
Frontera-Pons, J. [1 ]
Veganzones, M. A.
Velasco-Forero, S.
Pascal, F. [1 ]
Ovarlez, J. P. [1 ]
Chanussot, J.
机构
[1] Supelec, SONDRA Res Alliance, Palaiseau, France
关键词
hypespectral imaging; anomaly detection; elliptical distributions; M-estimators; CFAR DETECTION; DISTRIBUTIONS; IMAGES;
D O I
10.1109/IGARSS.2014.6947518
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Anomaly Detection methods are used when there is not enough information about the target to detect. These methods search for pixels in the image with spectral characteristics that differ from the background. The most widespread detection test, the RX-detector, is based on the Mahalanobis distance and on the background statistical characterization through the mean vector and the covariance matrix. Although non-Gaussian distributions have already been introduced for background modeling in Hyperspectral Imaging, the parameters estimation is still performed using the Maximum Likelihood Estimates for Gaussian distribution. This paper describes robust estimation procedures more suitable for non-Gaussian environment. Therefore, they can be used as plug-in estimators for the RX-detector leading to some great improvement in the detection process. This theoretical improvement has been evidenced over two real hyperspectral images.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Greedy Ensemble Hyperspectral Anomaly Detection
    Hossain, Mazharul
    Younis, Mohammed
    Robinson, Aaron
    Wang, Lan
    Preza, Chrysanthe
    JOURNAL OF IMAGING, 2024, 10 (06)
  • [42] Hyperspectral Anomaly Detection With Guided Autoencoder
    Xiang, Pei
    Ali, Shahzad
    Jung, Soon Ki
    Zhou, Huixin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [43] Iterative SpectralSpatial Hyperspectral Anomaly Detection
    Chang, Chein-, I
    Lin, Chien-Yu
    Chung, Pau-Choo
    Hu, Peter Fuming
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [44] HYPERSPECTRAL ANOMALY DETECTION IN URBAN SCENARIOS
    Rejas Ayuga, J. G.
    Martinez Marin, R.
    Marchamalo Sacristan, M.
    Bonatti, J.
    Ojeda, J. C.
    XXIII ISPRS CONGRESS, COMMISSION VII, 2016, 41 (B7): : 111 - 116
  • [45] Research progress on hyperspectral anomaly detection
    Qu B.
    Zheng X.
    Qian X.
    Lu X.
    National Remote Sensing Bulletin, 2024, 28 (01) : 42 - 54
  • [46] Characterization of anomaly detection in hyperspectral imagery
    Chang, Chein-I
    Hsueh, Mingkai
    Sensor Review, 2006, 26 (02) : 137 - 146
  • [47] Anomaly detection in noisy hyperspectral imagery
    Riley, RA
    Newsom, RK
    Andrews, AK
    IMAGING SPECTROMETRY X, 2004, 5546 : 159 - 170
  • [48] Anomaly detection from hyperspectral imagery
    Stein, DWJ
    Beaven, SG
    Hoff, LE
    Winter, EM
    Schaum, AP
    Stocker, AD
    IEEE SIGNAL PROCESSING MAGAZINE, 2002, 19 (01) : 58 - 69
  • [49] Collaborative Representation for Hyperspectral Anomaly Detection
    Li, Wei
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (03): : 1463 - 1474
  • [50] Hyperspectral anomaly detection: Beyond RX
    Schaum, A.
    Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIII, 2007, 6565 : COVER1 - +