Collaborative Representation for Hyperspectral Anomaly Detection

被引:518
|
作者
Li, Wei [1 ]
Du, Qian [2 ]
机构
[1] Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R China
[2] Mississippi State Univ, Dept Elect & Comp Engn, Mississippi State, MS 39762 USA
来源
基金
中国国家自然科学基金;
关键词
Anomaly detection; collaborative representation; kernel collaborative representation; hyperspectral imagery (HSI); sparse representation; NEAREST REGULARIZED SUBSPACE; KERNEL-INDUCED SPACES; MATCHED-FILTER; CLASSIFICATION; REDUCTION; FUSION;
D O I
10.1109/TGRS.2014.2343955
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In this paper, collaborative representation is proposed for anomaly detection in hyperspectral imagery. The algorithm is directly based on the concept that each pixel in background can be approximately represented by its spatial neighborhoods, while anomalies cannot. The representation is assumed to be the linear combination of neighboring pixels, and the collaboration of representation is reinforced by l(2)-norm minimization of the representation weight vector. To adjust the contribution of each neighboring pixel, a distance-weighted regularization matrix is included in the optimization problem, which has a simple and closed-form solution. By imposing the sum-to-one constraint to the weight vector, the stability of the solution can be enhanced. The major advantage of the proposed algorithm is the capability of adaptively modeling the background even when anomalous pixels are involved. A kernel extension of the proposed approach is also studied. Experimental results indicate that our proposed detector may outperform the traditional detection methods such as the classic Reed-Xiaoli (RX) algorithm, the kernel RX algorithm, and the state-of-the-art robust principal component analysis based and sparse-representation-based anomaly detectors, with low computational cost.
引用
下载
收藏
页码:1463 / 1474
页数:12
相关论文
共 50 条
  • [1] Hyperspectral Anomaly Detection With Relaxed Collaborative Representation
    Wu, Zhaoyue
    Su, Hongjun
    Tao, Xuanwen
    Han, Lirong
    Paoletti, Mercedes E.
    Haut, Juan M.
    Plaza, Javier
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [2] Nonnegative collaborative representation for hyperspectral anomaly detection
    Hu, Haojie
    Yao, Minli
    He, Fang
    Zhang, Fenggan
    Zhao, Jianwei
    Yan, Shuai
    REMOTE SENSING LETTERS, 2022, 13 (04) : 352 - 361
  • [3] Hyperspectral Anomaly Detection via Sparse Representation and Collaborative Representation
    Lin, Sheng
    Zhang, Min
    Cheng, Xi
    Zhou, Kexue
    Zhao, Shaobo
    Wang, Hai
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 946 - 961
  • [4] Selective Search Collaborative Representation for Hyperspectral Anomaly Detection
    Yin, Chensong
    Gao, Leitao
    Wang, Mingjie
    Liu, Anni
    APPLIED SCIENCES-BASEL, 2022, 12 (23):
  • [5] Hyperspectral Anomaly Detection Via Dual Collaborative Representation
    Zhang, Guoyun
    Li, Nanying
    Tu, Bing
    Liao, Zhuolang
    Peng, Yishu
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 (13) : 4881 - 4894
  • [6] Hyperspectral Anomaly Detection based on Collaborative Representation of Dictionary Subspace
    Yang, Yiyi
    Xiang, Pei
    Zhou, Huixin
    Li, Huan
    Li, Yuyan
    Zhao, Xing
    Li, Miaoqing
    AOPC 2019: OPTICAL SENSING AND IMAGING TECHNOLOGY, 2019, 11338
  • [7] Hyperspectral Anomaly Detection Using Collaborative Representation With Outlier Removal
    Su, Hongjun
    Wu, Zhaoyue
    Du, Qian
    Du, Peijun
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (12) : 5029 - 5038
  • [9] Anomaly Detection of Hyperspectral Imagery Using Modified Collaborative Representation
    Vafadar, Maryam
    Ghassemian, Hassan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (04) : 577 - 581
  • [10] Hyperspectral anomaly detection using ensemble and robust collaborative representation
    Wang, Shaoxi
    Hu, Xintao
    Sun, Jialong
    Liu, Jinzhuo
    INFORMATION SCIENCES, 2023, 624 : 748 - 760