ROBUST ANOMALY DETECTION IN HYPERSPECTRAL IMAGING

被引:8
|
作者
Frontera-Pons, J. [1 ]
Veganzones, M. A.
Velasco-Forero, S.
Pascal, F. [1 ]
Ovarlez, J. P. [1 ]
Chanussot, J.
机构
[1] Supelec, SONDRA Res Alliance, Palaiseau, France
关键词
hypespectral imaging; anomaly detection; elliptical distributions; M-estimators; CFAR DETECTION; DISTRIBUTIONS; IMAGES;
D O I
10.1109/IGARSS.2014.6947518
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Anomaly Detection methods are used when there is not enough information about the target to detect. These methods search for pixels in the image with spectral characteristics that differ from the background. The most widespread detection test, the RX-detector, is based on the Mahalanobis distance and on the background statistical characterization through the mean vector and the covariance matrix. Although non-Gaussian distributions have already been introduced for background modeling in Hyperspectral Imaging, the parameters estimation is still performed using the Maximum Likelihood Estimates for Gaussian distribution. This paper describes robust estimation procedures more suitable for non-Gaussian environment. Therefore, they can be used as plug-in estimators for the RX-detector leading to some great improvement in the detection process. This theoretical improvement has been evidenced over two real hyperspectral images.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] A Model-Driven Deep Mixture Network for Robust Hyperspectral Anomaly Detection
    Li, Yunsong
    Jiang, Kai
    Xie, Weiying
    Lei, Jie
    Zhang, Xin
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [22] ANOMALY DETECTION FOR HYPERSPECTRAL IMAGINARY
    Denisova, A. Yu.
    Myasnikov, V. V.
    COMPUTER OPTICS, 2014, 38 (02) : 287 - 296
  • [23] Hyperspectral Anomaly Detection: A Survey
    Su, Hongjun
    Wu, Zhaoyue
    Zhang, Huihui
    Du, Qian
    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2022, 10 (01) : 64 - 90
  • [24] A SemiparametricModel for Hyperspectral Anomaly Detection
    Rosario, Dalton
    JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, 2012, 2012
  • [25] Anomaly detection in hyperspectral imagery
    Chang, CI
    Chiang, SS
    Ginsberg, IW
    GEO-SPATIAL IMAGE AND DATA EXPLOITATION II, 2001, 4383 : 43 - 50
  • [26] Hyperspectral Anomaly Detection: A Dual Theory of Hyperspectral Target Detection
    Chang, Chein-, I
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [27] HYPERSPECTRAL ANOMALY DETECTION ON THE SPHERE
    Frontera-Pons, Joana
    2019 IEEE 8TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP 2019), 2019, : 101 - 105
  • [28] ROBUST DETECTION USING THE SIRV BACKGROUND MODELLING FOR HYPERSPECTRAL IMAGING
    Ovarlez, J. P.
    Pang, S. K.
    Pascal, F.
    Achard, V.
    Ng, T. K.
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 4316 - 4319
  • [29] ROBUST DETECTION USING M-ESTIMATORS FOR HYPERSPECTRAL IMAGING
    Frontera-Pons, J.
    Mahot, M.
    Ovarlez, J. P.
    Pascal, F.
    Chanussot, J.
    2012 4TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING (WHISPERS), 2012,
  • [30] Robust matched filters for target detection in hyperspectral imaging data
    Manolakis, D.
    Lockwood, R.
    Cooley, T.
    Jacobson, J.
    2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL I, PTS 1-3, PROCEEDINGS, 2007, : 529 - +