EQUIVARIANT HEAT INVARIANTS OF THE LAPLACIAN AND NONMININMAL OPERATORS ON DIFFERENTIAL FORMS

被引:0
|
作者
Yong, Wang [1 ]
机构
[1] NE Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
关键词
equivariant heat kernel asymptotics; Bochner Laplacian; nonmininmal operators; Gilkey-Branson-Fulling formula; EQUATION ASYMPTOTICS; KERNEL;
D O I
10.1016/S0252-9602(11)60277-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we compute the first two equivariant heat kernel coefficients of the Bochner Laplacian on differential forms. The first two equivariant heat kernel coefficients of the Bochner Laplacian with torsion are also given. We also study the equivariant heat kernel coefficients of nonminimal operators on differential forms and get the equivariant Gilkey-Branson-Fulling formula.
引用
收藏
页码:805 / 814
页数:10
相关论文
共 50 条
  • [2] Equivariant η-invariants and η-forms
    Goette, S
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2000, 526 : 181 - 236
  • [3] Transverse elliptic operators and equivariant differential forms
    Duflo, M
    ASTERISQUE, 1996, (237) : 29 - 45
  • [4] Equivariant symbol calculus for differential operators acting on forms
    Boniver, F
    Hansoul, S
    Mathonet, P
    Poncin, N
    LETTERS IN MATHEMATICAL PHYSICS, 2002, 62 (03) : 219 - 232
  • [5] Projectively equivariant quantization for differential operators acting on forms
    Hansoul, S
    LETTERS IN MATHEMATICAL PHYSICS, 2004, 70 (02) : 141 - 153
  • [6] Projectively Equivariant Quantization for Differential Operators Acting on Forms
    Sarah Hansoul
    Letters in Mathematical Physics, 2004, 70 : 141 - 153
  • [7] Equivariant Symbol Calculus for Differential Operators Acting on Forms
    F. Boniver
    S. Hansoul
    P. Mathonet
    N. Poncin
    Letters in Mathematical Physics, 2002, 62 : 219 - 232
  • [8] THE LAPLACIAN AND THE HEAT KERNEL ACTING ON DIFFERENTIAL FORMS ON SPHERES
    Nagase, Masayoshi
    TOHOKU MATHEMATICAL JOURNAL, 2009, 61 (04) : 571 - 588
  • [9] EQUIVARIANT CYCLIC HOMOLOGY AND EQUIVARIANT DIFFERENTIAL FORMS
    BLOCK, J
    GETZLER, E
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1994, 27 (04): : 493 - 527
  • [10] Affine Equivariant Networks Based on Differential Invariants
    Li, Yikang
    Qiu, Yeqing
    Chen, Yuxuan
    He, Lingshen
    Lin, Zhouchen
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2024, 2024, : 5546 - 5556