EQUIVARIANT HEAT INVARIANTS OF THE LAPLACIAN AND NONMININMAL OPERATORS ON DIFFERENTIAL FORMS

被引:0
|
作者
Yong, Wang [1 ]
机构
[1] NE Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
关键词
equivariant heat kernel asymptotics; Bochner Laplacian; nonmininmal operators; Gilkey-Branson-Fulling formula; EQUATION ASYMPTOTICS; KERNEL;
D O I
10.1016/S0252-9602(11)60277-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we compute the first two equivariant heat kernel coefficients of the Bochner Laplacian on differential forms. The first two equivariant heat kernel coefficients of the Bochner Laplacian with torsion are also given. We also study the equivariant heat kernel coefficients of nonminimal operators on differential forms and get the equivariant Gilkey-Branson-Fulling formula.
引用
收藏
页码:805 / 814
页数:10
相关论文
共 50 条