EQUIVARIANT HEAT INVARIANTS OF THE LAPLACIAN AND NONMININMAL OPERATORS ON DIFFERENTIAL FORMS

被引:0
|
作者
Yong, Wang [1 ]
机构
[1] NE Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
关键词
equivariant heat kernel asymptotics; Bochner Laplacian; nonmininmal operators; Gilkey-Branson-Fulling formula; EQUATION ASYMPTOTICS; KERNEL;
D O I
10.1016/S0252-9602(11)60277-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we compute the first two equivariant heat kernel coefficients of the Bochner Laplacian on differential forms. The first two equivariant heat kernel coefficients of the Bochner Laplacian with torsion are also given. We also study the equivariant heat kernel coefficients of nonminimal operators on differential forms and get the equivariant Gilkey-Branson-Fulling formula.
引用
收藏
页码:805 / 814
页数:10
相关论文
共 50 条
  • [31] Invariants of hypersurfaces and logarithmic differential forms
    Cynk, Slawomir
    Rams, Slawomir
    CONTRIBUTIONS TO ALGEBRAIC GEOMETRY: IMPANGA LECTURE NOTES, 2012, : 189 - 213
  • [32] Invariants of relative quadratic differential forms
    Thomas, TY
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1925, 11 : 722 - 725
  • [33] EQUIVARIANT HEAT ASYMPTOTICS ON SPACES OF AUTOMORPHIC FORMS
    Paniagua-Taboada, Octavio
    Ramacher, Pablo
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (05) : 3509 - 3537
  • [34] Spectral gaps of the Laplacian on differential forms
    Leal, Helton
    Lu, Zhiqin
    DIFFERENTIAL GEOMETRY AND GLOBAL ANALYSIS: IN HONOR OF TADASHI NAGANO, 2022, 777 : 127 - 135
  • [35] A New Strong Laplacian on Differential Forms
    S. E. Stepanov
    Mathematical Notes, 2004, 76 : 420 - 425
  • [36] Equivariant first order differential operators for parabolic geometries
    Johnson, KD
    Kor nyi, A
    Reimann, HM
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2003, 14 (3-4): : 385 - 393
  • [37] GENERATION OF NON-LINEAR EQUIVARIANT DIFFERENTIAL OPERATORS
    DELVER, R
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 77 (03) : 401 - 408
  • [38] Invariants of Forth Order Linear Differential Operators
    V. V. Lychagin
    V. A. Yumaguzhin
    Lobachevskii Journal of Mathematics, 2020, 41 : 2473 - 2481
  • [39] Invariants of Forth Order Linear Differential Operators
    Lychagin, V. V.
    Yumaguzhin, V. A.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2020, 41 (12) : 2473 - 2481
  • [40] On Invariants of Modules over the Ring of Differential Operators
    Aarti Patle
    Jyoti Singh
    Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 2619 - 2637