THE LAPLACIAN AND THE HEAT KERNEL ACTING ON DIFFERENTIAL FORMS ON SPHERES

被引:0
|
作者
Nagase, Masayoshi [1 ]
机构
[1] Saitama Univ, Grad Sch Sci & Engn, Dept Math, Saitama 3388570, Japan
基金
日本学术振兴会;
关键词
Sphere; Laplacian; heat kernel; RIEMANNIAN SYMMETRIC-SPACES; COMPACT; 1-FORMS; SPECTRA;
D O I
10.2748/tmj/1264084500
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the Laplacian acting on differential forms on a sphere can be lifted to an operator on its rotation group which is intrinsically equivalent to the Laplacian acting on functions on the Lie group. Further, using the result and the Urakawa summation formula for the heat kernel of the latter Laplacian and the Weyl integration formula, we get a summation formula for the kernel of the former.
引用
收藏
页码:571 / 588
页数:18
相关论文
共 50 条