Video Anomaly Detection using Selective Spatio-Temporal Interest Points and Convolutional Sparse Coding

被引:2
|
作者
Cahyadi, Rudy [1 ]
Fadlil, Junaidillah [1 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Comp Sci & Informat Engn, Taipei, Taiwan
关键词
Video anomaly; Selective Spatio-temporal interest point; Convolutional sparse coding;
D O I
10.1109/WI-IAT.2015.217
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Finding substantial features is a significant approach to cope the challenges of video anomaly detection and localization. The specific important representation are selected to detect an event in video. State-of-the-art models explore this fashion by do seeking interest points both spatially and temporally. However, it has to very selective towards undesired object or background. Selective Spatio-Temporal Interest Points (SSTIP) address this issue. While, Convolutional Sparse Coding (CSC) with the capability to detect an anomaly event by produce more error in the reconstruction, is preferred rather than patch-based. It demonstrates that utilization SSTIP and CSC yields promising performance.
引用
收藏
页码:203 / 206
页数:4
相关论文
共 50 条
  • [1] Selective spatio-temporal interest points
    Chakraborty, Bhaskar
    Holte, Michael B.
    Moeslund, Thomas B.
    Gonzalez, Jordi
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2012, 116 (03) : 396 - 410
  • [2] Spatio-Temporal Interest Points Matching in Video
    Elabbessi, Sarra
    Abdellaoui, Mehrez
    Douik, Ali
    [J]. 2015 GLOBAL SUMMIT ON COMPUTER & INFORMATION TECHNOLOGY (GSCIT), 2015,
  • [3] Enhancing Video Anomaly Detection Using Spatio-Temporal Autoencoders and Convolutional LSTM Networks
    Almahadin G.
    Subburaj M.
    Hiari M.
    Sathasivam Singaram S.
    Kolla B.P.
    Dadheech P.
    Vibhute A.D.
    Sengan S.
    [J]. SN Computer Science, 5 (1)
  • [4] Using Spatio-Temporal Interest Points (STIP) for myoclonic jerk detection in nocturnal video
    Cuppens, Kris
    Chen, Chih-Wei
    Wong, Kevin Bing-Yung
    Van de Vel, Anouk
    Lagae, Lieven
    Ceulemans, Berten
    Tuytelaars, Tinne
    Van Huffel, Sabine
    Vanrumste, Bart
    Aghajan, Hamid
    [J]. 2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2012, : 4454 - 4457
  • [5] Video anomaly detection with spatio-temporal dissociation
    Chang, Yunpeng
    Tu, Zhigang
    Xie, Wei
    Luo, Bin
    Zhang, Shifu
    Sui, Haigang
    Yuan, Junsong
    [J]. PATTERN RECOGNITION, 2022, 122
  • [6] Spatio-Temporal AutoEncoder for Video Anomaly Detection
    Zhao, Yiru
    Deng, Bing
    Shen, Chen
    Liu, Yao
    Lu, Hongtao
    Hua, Xian-Sheng
    [J]. PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 1933 - 1941
  • [7] Spatio-Temporal United Memory for Video Anomaly Detection
    Wang, Yunlong
    Chen, Mingyi
    Li, Jiaxin
    Li, Hongjun
    [J]. STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, S+SSPR 2022, 2022, 13813 : 84 - 93
  • [8] Transformer with Spatio-Temporal Representation for Video Anomaly Detection
    Sun, Xiaohu
    Chen, Jinyi
    Shen, Xulin
    Li, Hongjun
    [J]. STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, S+SSPR 2022, 2022, 13813 : 213 - 222
  • [9] Spatio-Temporal Unity Networking for Video Anomaly Detection
    Li, Yuanyuan
    Cai, Yiheng
    Liu, Jiaqi
    Lang, Shinan
    Zhang, Xinfeng
    [J]. IEEE ACCESS, 2019, 7 : 172425 - 172432
  • [10] Spatio-temporal based video anomaly detection using deep neural networks
    Chaurasia R.K.
    Jaiswal U.C.
    [J]. International Journal of Information Technology, 2023, 15 (3) : 1569 - 1581