GLMdenoise improves multivariate pattern analysis of fMRI data

被引:20
|
作者
Charest, Ian [1 ,2 ]
Kriegeskorte, Nikolaus [2 ,3 ]
Kay, Kendrick N. [4 ]
机构
[1] Univ Birmingham, Sch Psychol, Birmingham, W Midlands, England
[2] Univ Cambridge, Med Res Council, Cognit & Brain Sci Unit, Cambridge, England
[3] Columbia Univ, Dept Psychol, Zuckerman Mind Brain Behav Inst, New York, NY 10027 USA
[4] Univ Minnesota, Dept Radiol, CMRR, Minneapolis, MN 55455 USA
基金
欧洲研究理事会; 英国医学研究理事会;
关键词
BOLD fMRI; General linear model; Cross-validation; Correlated noise; Representational similarity analysis; Decoding; Classification; Denoising; Multivariate pattern analysis; BRAIN; NOISE; VARIANCE; BOLD; FLUCTUATIONS; REGRESSION; SIGNAL; SPACE;
D O I
10.1016/j.neuroimage.2018.08.064
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
GLMdenoise is a denoising technique for task-based fMRI. In GLMdenoise, estimates of spatially correlated noise (which may be physiological, instrumental, motion-related, or neural in origin) are derived from the data and incorporated as nuisance regressors in a general linear model (GLM) analysis. We previously showed that GLMdenoise outperforms a variety of other denoising techniques in terms of cross-validation accuracy of GLM estimates (Kay et al., 2013a). However, the practical impact of denoising for experimental studies remains unclear. Here we examine whether and to what extent GLMdenoise improves sensitivity in the context of multivariate pattern analysis of fMRI data. On a large number of participants (31 participants across 4 experiments; 3 T, gradient-echo, spatial resolution 2-3.75 mm, temporal resolution 1.3-2 s, number of conditions 32-75), we perform representational similarity analysis (Kriegeskorte et al., 2008a) as well as pattern classification (Haxby et al., 2001). We find that GLMdenoise substantially improves replicability of representational dissimilarity matrices (RDMs) across independent splits of each participant's dataset (average RDM replicability increases from r = 0.46 to r = 0.61). Additionally, we find that GLMdenoise substantially improves pairwise classification accuracy (average classification accuracy increases from 79% correct to 84% correct). We show that GLMdenoise often improves and never degrades performance for individual participants and that GLMdenoise also improves across-participant consistency. We conclude that GLMdenoise is a useful tool that can be routinely used to maximize the amount of information extracted from fMRI activity patterns.
引用
收藏
页码:606 / 616
页数:11
相关论文
共 50 条
  • [1] PyMVPA: a Python Toolbox for Multivariate Pattern Analysis of fMRI Data
    Michael Hanke
    Yaroslav O. Halchenko
    Per B. Sederberg
    Stephen José Hanson
    James V. Haxby
    Stefan Pollmann
    [J]. Neuroinformatics, 2009, 7 : 37 - 53
  • [2] Automated diagnosis of schizophrenia using multivariate pattern analysis of fMRI data
    Yoon, Jong H.
    Tamir, Diana
    Minzenberg, Michael J.
    Ragland, J. Daniel
    Ursu, Stefan
    Carter, Cameron S.
    [J]. BIOLOGICAL PSYCHIATRY, 2008, 63 (07) : 268S - 268S
  • [3] PyMVPA: a Python']Python Toolbox for Multivariate Pattern Analysis of fMRI Data
    Hanke, Michael
    Halchenko, Yaroslav O.
    Sederberg, Per B.
    Hanson, Stephen Jose
    Haxby, James V.
    Pollmann, Stefan
    [J]. NEUROINFORMATICS, 2009, 7 (01) : 37 - 53
  • [4] Multivariate pattern analysis of fMRI: The early beginnings
    Haxby, James V.
    [J]. NEUROIMAGE, 2012, 62 (02) : 852 - 855
  • [5] The PyMVPA BIDS-App: a robust multivariate pattern analysis pipeline for fMRI data
    Torabian, Sajjad
    Velez, Natalia
    Sochat, Vanessa
    Halchenko, Yaroslav O.
    Grossman, Emily D.
    [J]. FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [6] Multivariate Granger Causality Analysis of fMRI Data
    Deshpande, Gopikrishna
    LaConte, Stephan
    James, George Andrew
    Peltier, Scott
    Hu, Xiaoping
    [J]. HUMAN BRAIN MAPPING, 2009, 30 (04) : 1361 - 1373
  • [7] GLMdenoise: a fast, automated technique for denoising task-based fMRI data
    Kay, Kendrick N.
    Rokem, Ariel
    Winawer, Jonathan
    Dougherty, Robert F.
    Wandell, Brian A.
    [J]. FRONTIERS IN NEUROSCIENCE, 2013, 7
  • [8] Multivariate pattern analysis of fMRI data for imaginary and real colours in grapheme-colour synaesthesia
    Ruiz, Mathieu J.
    Dojat, Michel
    Hupe, Jean-Michel
    [J]. EUROPEAN JOURNAL OF NEUROSCIENCE, 2020, 52 (05) : 3434 - 3456
  • [9] Multivariate fMRI pattern analysis of fear perception across modalities
    Whitehead, Jocelyne C.
    Armony, Jorge L.
    [J]. EUROPEAN JOURNAL OF NEUROSCIENCE, 2019, 49 (12) : 1552 - 1563
  • [10] The combination of univariate and multivariate method for fMRI data analysis
    Xia, WW
    Yan, LR
    Zhou, ZT
    Liu, YD
    Hu, DW
    [J]. PROCEEDINGS OF THE 2005 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS AND BRAIN, VOLS 1-3, 2005, : 1568 - 1573