The PyMVPA BIDS-App: a robust multivariate pattern analysis pipeline for fMRI data

被引:0
|
作者
Torabian, Sajjad [1 ]
Velez, Natalia [2 ]
Sochat, Vanessa [3 ]
Halchenko, Yaroslav O. [4 ]
Grossman, Emily D. [1 ]
机构
[1] Univ Calif Irvine, Visual Percept & Neuroimaging Lab, Dept Cognit Sci, Irvine, CA 92697 USA
[2] Harvard Univ, Dept Psychol, Computat Cognit Neurosci Lab, Cambridge, MA USA
[3] Lawrence Livermore Natl Lab, Livermore, CA USA
[4] Dartmouth Coll, Dept Psychol & Brain Sci, Hanover, NH USA
基金
美国国家科学基金会;
关键词
fMRI; MVPA; PyMVPA; BIDS; BIDS-App; MOTION ARTIFACT; DESIGN; SEGMENTATION; REGISTRATION; ACCURATE;
D O I
10.3389/fnins.2023.1233416
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
With the advent of multivariate pattern analysis (MVPA) as an important analytic approach to fMRI, new insights into the functional organization of the brain have emerged. Several software packages have been developed to perform MVPA analysis, but deploying them comes with the cost of adjusting data to individual idiosyncrasies associated with each package. Here we describe PyMVPA BIDS-App, a fast and robust pipeline based on the data organization of the BIDS standard that performs multivariate analyses using powerful functionality of PyMVPA. The app runs flexibly with blocked and event-related fMRI experimental designs, is capable of performing classification as well as representational similarity analysis, and works both within regions of interest or on the whole brain through searchlights. In addition, the app accepts as input both volumetric and surface-based data. Inspections into the intermediate stages of the analyses are available and the readability of final results are facilitated through visualizations. The PyMVPA BIDS-App is designed to be accessible to novice users, while also offering more control to experts through command-line arguments in a highly reproducible environment.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] PyMVPA: a Python Toolbox for Multivariate Pattern Analysis of fMRI Data
    Michael Hanke
    Yaroslav O. Halchenko
    Per B. Sederberg
    Stephen José Hanson
    James V. Haxby
    Stefan Pollmann
    [J]. Neuroinformatics, 2009, 7 : 37 - 53
  • [2] PyMVPA: a Python']Python Toolbox for Multivariate Pattern Analysis of fMRI Data
    Hanke, Michael
    Halchenko, Yaroslav O.
    Sederberg, Per B.
    Hanson, Stephen Jose
    Haxby, James V.
    Pollmann, Stefan
    [J]. NEUROINFORMATICS, 2009, 7 (01) : 37 - 53
  • [3] GLMdenoise improves multivariate pattern analysis of fMRI data
    Charest, Ian
    Kriegeskorte, Nikolaus
    Kay, Kendrick N.
    [J]. NEUROIMAGE, 2018, 183 : 606 - 616
  • [4] Funcmasker-flex: An Automated BIDS-App for Brain Segmentation of Human Fetal Functional MRI data
    Emily S. Nichols
    Susana Correa
    Peter Van Dyken
    Jason Kai
    Tristan Kuehn
    Sandrine de Ribaupierre
    Emma G. Duerden
    Ali R. Khan
    [J]. Neuroinformatics, 2023, 21 : 565 - 573
  • [5] Funcmasker-flex: An Automated BIDS-App for Brain Segmentation of Human Fetal Functional MRI data
    Nichols, Emily S. S.
    Correa, Susana
    Van Dyken, Peter
    Kai, Jason
    Kuehn, Tristan
    de Ribaupierre, Sandrine
    Duerden, Emma G. G.
    Khan, Ali R. R.
    [J]. NEUROINFORMATICS, 2023, 21 (03) : 565 - 573
  • [6] Automated diagnosis of schizophrenia using multivariate pattern analysis of fMRI data
    Yoon, Jong H.
    Tamir, Diana
    Minzenberg, Michael J.
    Ragland, J. Daniel
    Ursu, Stefan
    Carter, Cameron S.
    [J]. BIOLOGICAL PSYCHIATRY, 2008, 63 (07) : 268S - 268S
  • [7] Multivariate pattern analysis of fMRI: The early beginnings
    Haxby, James V.
    [J]. NEUROIMAGE, 2012, 62 (02) : 852 - 855
  • [8] Multivariate Granger Causality Analysis of fMRI Data
    Deshpande, Gopikrishna
    LaConte, Stephan
    James, George Andrew
    Peltier, Scott
    Hu, Xiaoping
    [J]. HUMAN BRAIN MAPPING, 2009, 30 (04) : 1361 - 1373
  • [9] Multivariate pattern analysis of fMRI data for imaginary and real colours in grapheme-colour synaesthesia
    Ruiz, Mathieu J.
    Dojat, Michel
    Hupe, Jean-Michel
    [J]. EUROPEAN JOURNAL OF NEUROSCIENCE, 2020, 52 (05) : 3434 - 3456
  • [10] ECKO: Ensemble of Clustered Knockoffs for Robust Multivariate Inference on fMRI Data
    Tuan-Binh Nguyen
    Chevalier, Jerome-Alexis
    Thirion, Bertrand
    [J]. INFORMATION PROCESSING IN MEDICAL IMAGING, IPMI 2019, 2019, 11492 : 454 - 466